Evaluations of large language models (LLMs) suffer from instability, where small changes of random factors such as few-shot examples can lead to drastic fluctuations of scores and even model rankings. Moreover, different LLMs can have different preferences for a certain setting of random factors. As a result, using a fixed setting of random factors, which is often adopted as the paradigm of current evaluations, can lead to potential unfair comparisons between LLMs. To mitigate the volatility of evaluations, we first theoretically analyze the sources of variance induced by changes in random factors. Targeting these specific sources, we then propose the instance-level randomization (ILR) method to reduce variance and enhance fairness in model comparisons. Instead of using a fixed setting across the whole benchmark in a single experiment, we randomize all factors that affect evaluation scores for every single instance, run multiple experiments and report the averaged score. Theoretical analyses and empirical results demonstrate that ILR can reduce the variance and unfair comparisons caused by random factors, as well as achieve similar robustness level with less than half computational cost compared with previous methods. Codes and data are available at https://github.com/EricLee8/Instance-level-Randomization.
Since the outbreak of coronavirus at the end of 2019, there have been numerous studies on coro- navirus in the NLP arena. Meanwhile, Twitter has been a valuable source of news and a pub- lic medium for the conveyance of information and personal expression. This paper describes the system developed by the Ochadai team for the Social Media Mining for Health Appli- cations (SMM4H) 2021 Task 5, which aims to automatically distinguish English tweets that self-report potential cases of COVID-19 from those that do not. We proposed a model ensemble that leverages pre-trained represen- tations from COVID-Twitter-BERT (Müller et al., 2020), RoBERTa (Liu et al., 2019), and Twitter-RoBERTa (Glazkova et al., 2021). Our model obtained F1-scores of 76% on the test set in the evaluation phase, and 77.5% in the post-evaluation phase.
In this paper, we propose a novel bipartite flat-graph network (BiFlaG) for nested named entity recognition (NER), which contains two subgraph modules: a flat NER module for outermost entities and a graph module for all the entities located in inner layers. Bidirectional LSTM (BiLSTM) and graph convolutional network (GCN) are adopted to jointly learn flat entities and their inner dependencies. Different from previous models, which only consider the unidirectional delivery of information from innermost layers to outer ones (or outside-to-inside), our model effectively captures the bidirectional interaction between them. We first use the entities recognized by the flat NER module to construct an entity graph, which is fed to the next graph module. The richer representation learned from graph module carries the dependencies of inner entities and can be exploited to improve outermost entity predictions. Experimental results on three standard nested NER datasets demonstrate that our BiFlaG outperforms previous state-of-the-art models.
Deep neural network models have helped named entity recognition achieve amazing performance without handcrafting features. However, existing systems require large amounts of human annotated training data. Efforts have been made to replace human annotations with external knowledge (e.g., NE dictionary, part-of-speech tags), while it is another challenge to obtain such effective resources. In this work, we propose a fully unsupervised NE recognition model which only needs to take informative clues from pre-trained word embeddings.We first apply Gaussian Hidden Markov Model and Deep Autoencoding Gaussian Mixture Model on word embeddings for entity span detection and type prediction, and then further design an instance selector based on reinforcement learning to distinguish positive sentences from noisy sentences and then refine these coarse-grained annotations through neural networks. Extensive experiments on two CoNLL benchmark NER datasets (CoNLL-2003 English dataset and CoNLL-2002 Spanish dataset) demonstrate that our proposed light NE recognition model achieves remarkable performance without using any annotated lexicon or corpus.