Yinhua Piao
2025
MV-CLAM: Multi-View Molecular Interpretation with Cross-Modal Projection via Language Model
Sumin Ha
|
Jun Hyeong Kim
|
Yinhua Piao
|
Changyun Cho
|
Sun Kim
Findings of the Association for Computational Linguistics: EMNLP 2025
Deciphering molecular meaning in chemistry and biomedicine depends on context — a capability that large language models (LLMs) can enhance by aligning molecular structures with language. However, existing molecule-text models ignore complementary information in different molecular views and rely on single-view representations, limiting molecule structural understanding. Moreover, naïve multi-view alignment strategies face two challenges: (1) the aligned spaces differ across views due to inconsistent molecule-text mappings, and (2) existing loss objectives fail to preserve complementary information necessary for finegrained alignment. To enhance LLM’s ability to understand molecular structure, we propose MV-CLAM, a novel framework that aligns multi-view molecular representations into a unified textual space using a multi-querying transformer (MQ-Former). Our approach ensures cross-view consistency while the proposed token-level contrastive loss preserves diverse molecular features across textual queries. MV-CLAM enhances molecular reasoning, improving retrieval and captioning accuracy. The source code of MV-CLAM is available in https://github.com/sumin124/mv-clam.
2023
Clinical Note Owns its Hierarchy: Multi-Level Hypergraph Neural Networks for Patient-Level Representation Learning
Nayeon Kim
|
Yinhua Piao
|
Sun Kim
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Leveraging knowledge from electronic health records (EHRs) to predict a patient’s condition is essential to the effective delivery of appropriate care. Clinical notes of patient EHRs contain valuable information from healthcare professionals, but have been underused due to their difficult contents and complex hierarchies. Recently, hypergraph-based methods have been proposed for document classifications. Directly adopting existing hypergraph methods on clinical notes cannot sufficiently utilize the hierarchy information of the patient, which can degrade clinical semantic information by (1) frequent neutral words and (2) hierarchies with imbalanced distribution. Thus, we propose a taxonomy-aware multi-level hypergraph neural network (TM-HGNN), where multi-level hypergraphs assemble useful neutral words with rare keywords via note and taxonomy level hyperedges to retain the clinical semantic information. The constructed patient hypergraphs are fed into hierarchical message passing layers for learning more balanced multi-level knowledge at the note and taxonomy levels. We validate the effectiveness of TM-HGNN by conducting extensive experiments with MIMIC-III dataset on benchmark in-hospital-mortality prediction.