Yu Weng


2025

pdf bib
TVQACML: Benchmarking Text-Centric Visual Question Answering in Multilingual Chinese Minority Languages
Sha Jiu | Yu Weng | Mengxiao Zhu | Chong Feng | Zheng Liu | Jialedongzhu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Text-Centric Visual Question Answering (TEC-VQA) is a critical research area that requires semantic interactions between objects and scene texts. However, most existing TEC-VQA benchmarks focus on high-resource languages like English and Chinese. Although few works expanding multilingual QA pairs in non-text-centric VQA datasets through translation, which encounters a substantial “visual-textual misalignment” problem when applied to TEC-VQA. Moreover, the open-source nature of these benchmarks and the broad sources of training data for MLLMs have inevitably led to benchmark contamination, resulting in unreliable evaluation results. To alleviate this issue, we propose a contamination-free and more challenging TEC-VQA benchmark called Text-Centric Visual Question Answering in Multilingual Chinese Minority Languages(TVQACML), which involves eight languages, including Standard Chinese, Korean, and six minority languages. TVQACML supports a wide range of tasks, such as Text Recognition, Scene Text-Centric VQA, Document-Oriented VQA, Key Information Extraction (KIE), and Handwritten Mathematical Expression Recognition (HMER), featuring 32,000 question-answer pairs across 8,000 images. Extensive experiments on TVQACML across multiple MLLMs demonstrate the effectiveness of evaluating the MLLMs and enhancing multilingual TEC-VQA performance with fine-tuning.

pdf bib
Spotlighter: Revisiting Prompt Tuning from a Representative Mining View
Yutong Gao | Maoyuan Shao | Xinyang Huang | Chuang Zhu | Yu Weng | Xuan Liu | Lijuan Sun | Guoshun Nan
Findings of the Association for Computational Linguistics: EMNLP 2025

CLIP’s success has demonstrated that prompt tuning can achieve robust cross-modal semantic alignment for tasks ranging from open-domain recognition to fine-grained classification. However, redundant or weakly relevant feature components introduce noise and incur unnecessary computational costs. In this work, we propose Spotlighter, a lightweight token-selection framework that simultaneously enhances accuracy and efficiency in prompt tuning. Spotlighter evaluates each visual token’s activation from both sample-wise and semantic-wise perspectives and retains only the top-scoring tokens for downstream prediction. A class-specific semantic memory bank of learned prototypes refines this selection, ensuring semantic representativeness and compensating for discarded features. To further prioritize informative signals, we introduce a two-level ranking mechanism that dynamically weights token–prototype interactions. Across 11 few-shot benchmarks, Spotlighter outperforms CLIP by up to 11.19% in harmonic mean accuracy and achieves up to 0.8K additional FPS, with only 21 extra parameters. These results establish Spotlighter as an effective and scalable baseline for prompt tuning.