Yudong Wang
May refer to several people
Other people with similar names: Yudong Wang (Peking)
2025
A Probabilistic Inference Scaling Theory for LLM Self-Correction
Zhe Yang
|
Yichang Zhang
|
Yudong Wang
|
Ziyao Xu
|
Junyang Lin
|
Zhifang Sui
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Large Language Models (LLMs) have demonstrated the capability to refine their generated answers through self-correction, enabling continuous performance improvement over multiple rounds. However, the mechanisms underlying how and why accuracy evolves during this iterative process remain unexplored. To fill this gap, we propose a probabilistic theory to model the dynamics of accuracy change and explain the performance improvements observed in multi-round self-correction. Through mathematical derivation, we establish that the accuracy after the tth round of self-correction is given by: Acct = Upp - 𝛼t(Upp - Acc0),where Acc0 denotes the initial accuracy, Upp represents the upper bound of accuracy convergence, and 𝛼 determines the rate of convergence. Based on our theory, these parameters can be calculated and the predicted accuracy curve then can be obtained through only a single round of self-correction. Extensive experiments across diverse models and datasets demonstrate that our theoretical predictions align closely with empirical accuracy curves, validating the effectiveness of the theory. Our work provides a theoretical foundation for understanding LLM self-correction, thus paving the way for further explorations.
2024
Code Needs Comments: Enhancing Code LLMs with Comment Augmentation
Demin Song
|
Honglin Guo
|
Yunhua Zhou
|
Shuhao Xing
|
Yudong Wang
|
Zifan Song
|
Wenwei Zhang
|
Qipeng Guo
|
Hang Yan
|
Xipeng Qiu
|
Dahua Lin
Findings of the Association for Computational Linguistics: ACL 2024
The programming skill is one crucial ability for Large Language Models (LLMs), necessitating a deep understanding of programming languages (PLs) and their correlation with natural languages (NLs). We examine the impact of pre-training data on code-focused LLMs’ performance by assessing the comment density as a measure of PL-NL alignment. Given the scarcity of code-comment aligned data in pre-training corpora, we introduce a novel data augmentation method that generates comments for existing code, coupled with a data filtering strategy that filters out code data poorly correlated with natural language. We conducted experiments on three code-focused LLMs and observed consistent improvements in performance on two widely-used programming skill benchmarks. Notably, the model trained on the augmented data outperformed both the model used for generating comments and the model further trained on the data without augmentation.
Search
Fix author
Co-authors
- Honglin Guo 1
- Qipeng Guo 1
- Dahua Lin 1
- Junyang Lin 1
- Xipeng Qiu (邱锡鹏) 1
- show all...