Yueqian Wang


2025

pdf bib
VideoLLM Knows When to Speak: Enhancing Time-Sensitive Video Comprehension with Video-Text Duet Interaction Format
Yueqian Wang | Xiaojun Meng | Yuxuan Wang | Jianxin Liang | Jiansheng Wei | Huishuai Zhang | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2025

Recent researches on video large language models (VideoLLM) predominantly focus on model architectures and training datasets, leaving the interaction format between the user and the model under-explored. In existing works, users often interact with VideoLLMs by using the entire video and a query as input, after which the model generates a response. This interaction format constrains the application of VideoLLMs in scenarios such as live-streaming comprehension where videos do not end and responses are required in a real-time manner, and also results in unsatisfactory performance on time-sensitive tasks that requires localizing video segments. In this paper, we focus on a video-text duet interaction format. This interaction format is characterized by the continuous playback of the video, and both the user and the model can insert their text messages at any position during the video playback. When a text message ends, the video continues to play, akin to the alternative of two performers in a duet. We construct MMDuetIT, a video-text training dataset designed to adapt VideoLLMs to video-text duet interaction format. We also introduce the Multi-Answer Grounded Video Question Answering (MAGQA) task to benchmark the real-time response ability of VideoLLMs. Trained on MMDuetIT, MMDuet demonstrates that adopting the video-text duet interaction format enables the model to achieve significant improvements in various time-sensitive tasks (76% CIDEr on YouCook2 dense video captioning, 90% mAP on QVHighlights highlight detection and 25% R@0.5 on Charades-STA temporal video grounding) with minimal training efforts, and also enable VideoLLMs to reply in a real-time manner as the video plays.

pdf bib
ReasVQA: Advancing VideoQA with Imperfect Reasoning Process
Jianxin Liang | Xiaojun Meng | Huishuai Zhang | Yueqian Wang | Jiansheng Wei | Dongyan Zhao
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

2024

pdf bib
Efficient Temporal Extrapolation of Multimodal Large Language Models with Temporal Grounding Bridge
Yuxuan Wang | Yueqian Wang | Pengfei Wu | Jianxin Liang | Dongyan Zhao | Yang Liu | Zilong Zheng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Despite progress in multimodal large language models (MLLMs), the challenge of interpreting long-form videos in response to linguistic queries persists, largely due to the inefficiency in temporal grounding and limited pre-trained context window size. In this work, we introduce Temporal Grounding Bridge (TGB), a novel framework that bootstraps MLLMs with advanced temporal grounding capabilities and broadens their contextual scope. Our framework significantly enhances the temporal capabilities of current MLLMs through three key innovations: an efficient multi-span temporal grounding algorithm applied to low-dimension temporal features projected from flow; a multimodal length extrapolation training paradigm that utilizes low-dimension temporal features to extend the training context window size; and a bootstrapping framework that bridges our model with pluggable MLLMs without requiring annotation. We validate TGB across seven video benchmarks and demonstrate substantial performance improvements compared with prior MLLMs. Notably, our model, initially trained on sequences of four frames, effectively handles sequences up to 16 longer without sacrificing performance, highlighting its scalability and effectiveness in real-world applications. Our code is publicly available.

2023

pdf bib
VSTAR: A Video-grounded Dialogue Dataset for Situated Semantic Understanding with Scene and Topic Transitions
Yuxuan Wang | Zilong Zheng | Xueliang Zhao | Jinpeng Li | Yueqian Wang | Dongyan Zhao
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Video-grounded dialogue understanding is a challenging problem that requires machine to perceive, parse and reason over situated semantics extracted from weakly aligned video and dialogues. Most existing benchmarks treat both modalities the same as a frame-independent visual understanding task, while neglecting the intrinsic attributes in multimodal dialogues, such as scene and topic transitions. In this paper, we present Video-grounded Scene&Topic AwaRe dialogue (VSTAR) dataset, a large scale video-grounded dialogue understanding dataset based on 395 TV series. Based on VSTAR, we propose two benchmarks for video-grounded dialogue understanding: scene segmentation and topic segmentation, and one benchmark for video-grounded dialogue generation. Comprehensive experiments are performed on these benchmarks to demonstrate the importance of multimodal information and segments in video-grounded dialogue understanding and generation.

2022

pdf bib
SMASH: Improving SMAll Language Models’ Few-SHot Ability with Prompt-Based Distillation
Yueqian Wang | Chang Liu | Kai Chen | Xi Wang | Dongyan Zhao
Findings of the Association for Computational Linguistics: EMNLP 2022

Large-scale language models coupled with prompts have shown remarkable performance on few-shot learning. However, through systematic experiments, we find that the few-shot performance of small language models is poor, and using prompts on them brings fewer improvements than on larger ones. In this paper, we propose SMASH, an approach to improve SMAll language models’ few-SHot ability by training on intermediate tasks before prompt-based fine-tuning on downstream tasks. We design intermediate tasks for sentence-pair tasks and sentiment classification tasks by creating training examples with prompt templates similar to downstream tasks using sentences sampled from a large-scale unsupervised corpus, and apply knowledge distillation to distill from outputs of larger pre-trained models as the training objective. We conduct extensive experiments and show that SMASH can make a 6-layer DistilRoBRETa-base achieve comparable performance on few-shot datasets with a 12-layer RoBERTa-base at a low cost.