Yurii Laba


2025

pdf bib
From Benchmark to Better Embeddings: Leveraging Synonym Substitution to Enhance Multimodal Models in Ukrainian
Volodymyr Mudryi | Yurii Laba
Findings of the Association for Computational Linguistics: EMNLP 2025

We study the robustness of text–image retrieval for Ukrainian under synonym-substitution attacks (SSA). On Multi30K with OpenCLIP, we evaluate two SSA methods: dictionary-based and LLM-based, and find Ukrainian degrades far more than English (e.g., GPT-4o SSA drops HIT@1 from 32.1 10.9 vs. 41.6 30.4). We introduce a Hybrid method that filters dictionary candidates with an LLM to preserve sense and grammar, yielding higher-quality perturbations (Ukrainian HIT@1 16.8 vs. 7.6/10.9). To mitigate this problem, we propose synonym-augmented fine-tuning, injecting one-word substitutions into training; it boosts robustness (Hybrid 28.1, GPT-4o 25.1) without harming original performance. This is the first systematic SSA evaluation for Ukrainian multimodal retrieval and a practical recipe for improving models in low-resource, morphologically rich languages. We release code, prompts, and trained checkpoints at https://github.com/YuriiLaba/UA-B2BE.

2024

pdf bib
Ukrainian Visual Word Sense Disambiguation Benchmark
Yurii Laba | Yaryna Mohytych | Ivanna Rohulia | Halyna Kyryleyza | Hanna Dydyk-Meush | Oles Dobosevych | Rostyslav Hryniv
Proceedings of the Third Ukrainian Natural Language Processing Workshop (UNLP) @ LREC-COLING 2024

This study presents a benchmark for evaluating the Visual Word Sense Disambiguation (Visual-WSD) task in Ukrainian. The main goal of the Visual-WSD task is to identify, with minimal contextual information, the most appropriate representation of a given ambiguous word from a set of ten images. To construct this benchmark, we followed a methodology similar to that proposed by (CITATION), who previously introduced benchmarks for the Visual-WSD task in English, Italian, and Farsi. This approach allows us to incorporate the Ukrainian benchmark into a broader framework for cross-language model performance comparisons. We collected the benchmark data semi-automatically and refined it with input from domain experts. We then assessed eight multilingual and multimodal large language models using this benchmark. All tested models performed worse than the zero-shot CLIP-based baseline model (CITATION) used by (CITATION) for the English Visual-WSD task. Our analysis revealed a significant performance gap in the Visual-WSD task between Ukrainian and English.

2023

pdf bib
Contextual Embeddings for Ukrainian: A Large Language Model Approach to Word Sense Disambiguation
Yurii Laba | Volodymyr Mudryi | Dmytro Chaplynskyi | Mariana Romanyshyn | Oles Dobosevych
Proceedings of the Second Ukrainian Natural Language Processing Workshop (UNLP)

This research proposes a novel approach to the Word Sense Disambiguation (WSD) task in the Ukrainian language based on supervised fine-tuning of a pre-trained Large Language Model (LLM) on the dataset generated in an unsupervised way to obtain better contextual embeddings for words with multiple senses. The paper presents a method for generating a new dataset for WSD evaluation in the Ukrainian language based on the SUM dictionary. We developed a comprehensive framework that facilitates the generation of WSD evaluation datasets, enables the use of different prediction strategies, LLMs, and pooling strategies, and generates multiple performance reports. Our approach shows 77,9% accuracy for lexical meaning prediction for homonyms.