Yuyao Yang


2025

pdf bib
A Survey of RAG-Reasoning Systems in Large Language Models
Yangning Li | Weizhi Zhang | Yuyao Yang | Wei-Chieh Huang | Yaozu Wu | Junyu Luo | Yuanchen Bei | Henry Peng Zou | Xiao Luo | Yusheng Zhao | Chunkit Chan | Yankai Chen | Zhongfen Deng | Yinghui Li | Hai-Tao Zheng | Dongyuan Li | Renhe Jiang | Ming Zhang | Yangqiu Song | Philip S. Yu
Findings of the Association for Computational Linguistics: EMNLP 2025

Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge, yet it falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts. This survey synthesizes both strands under a unified reasoning-search perspective. We first map how advanced reasoning optimizes each stage of RAG (Reasoning-Enhanced RAG). Then, we show how retrieved knowledge of different type supply missing premises and expand context for complex inference (RAG-Enhanced Reasoning). Finally, we spotlight emerging Synergized RAG-Reasoning frameworks, where (agentic) LLMs iteratively interleave search and thought to achieve state-of-the-art performance across knowledge-intensive benchmarks. We categorize methods, datasets, and open challenges, and outline research avenues toward deeper RAG-Reasoning systems that are more effective, multimodally-adaptive, trustworthy, and human-centric.