Zachary Ziegler


pdf bib
Generating Abstractive Summaries with Finetuned Language Models
Sebastian Gehrmann | Zachary Ziegler | Alexander Rush
Proceedings of the 12th International Conference on Natural Language Generation

Neural abstractive document summarization is commonly approached by models that exhibit a mostly extractive behavior. This behavior is facilitated by a copy-attention which allows models to copy words from a source document. While models in the mostly extractive news summarization domain benefit from this inductive bias, they commonly fail to paraphrase or compress information from the source document. Recent advances in transfer-learning from large pretrained language models give rise to alternative approaches that do not rely on copy-attention and instead learn to generate concise and abstractive summaries. In this paper, as part of the TL;DR challenge, we compare the abstractiveness of summaries from different summarization approaches and show that transfer-learning can be efficiently utilized without any changes to the model architecture. We demonstrate that the approach leads to a higher level of abstraction for a similar performance on the TL;DR challenge tasks, enabling true natural language compression.

pdf bib
Neural Linguistic Steganography
Zachary Ziegler | Yuntian Deng | Alexander Rush
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Whereas traditional cryptography encrypts a secret message into an unintelligible form, steganography conceals that communication is taking place by encoding a secret message into a cover signal. Language is a particularly pragmatic cover signal due to its benign occurrence and independence from any one medium. Traditionally, linguistic steganography systems encode secret messages in existing text via synonym substitution or word order rearrangements. Advances in neural language models enable previously impractical generation-based techniques. We propose a steganography technique based on arithmetic coding with large-scale neural language models. We find that our approach can generate realistic looking cover sentences as evaluated by humans, while at the same time preserving security by matching the cover message distribution with the language model distribution.