Zan Hongying


pdf bib
MRC-based Medical NER with Multi-task Learning and Multi-strategies
Xiaojing Du | Jia Yuxiang | Zan Hongying
Proceedings of the 21st Chinese National Conference on Computational Linguistics

“Medical named entity recognition (NER), a fundamental task of medical information extraction, is crucial for medical knowledge graph construction, medical question answering, and automatic medical record analysis, etc. Compared with named entities (NEs) in general domain, medical named entities are usually more complex and prone to be nested. To cope with both flat NEs and nested NEs, we propose a MRC-based approach with multi-task learning and multi-strategies. NER can be treated as a sequence labeling (SL) task or a span boundary detection (SBD) task. We integrate MRC-CRF model for SL and MRC-Biaffine model for SBD into the multi-task learning architecture, and select the more efficient MRC-CRF as the final decoder. To further improve the model, we employ multi-strategies, including adaptive pre-training, adversarial training, and model stacking with cross validation. Experiments on both nested NER corpus CMeEE and flat NER corpus CCKS2019 show the effectiveness of the MRC-based model with multi-task learning and multi-strategies.”


pdf bib
Reusable Phrase Extraction Based on Syntactic Parsing
Xuemin Duan | Zan Hongying | Xiaojing Bai | Christoph Zähner
Proceedings of the 19th Chinese National Conference on Computational Linguistics

Academic Phrasebank is an important resource for academic writers. Student writers use the phrases of Academic Phrasebank organizing their research article to improve their writing ability. Due to the limited size of Academic Phrasebank, it can not meet all the academic writing needs. There are still a large number of academic phraseology in the authentic research article. In this paper, we proposed an academic phraseology extraction model based on constituency parsing and dependency parsing, which can automatically extract the academic phraseology similar to phrases of Academic Phrasebank from an unlabelled research article. We divided the proposed model into three main components including an academic phraseology corpus module, a sentence simplification module, and a syntactic parsing module. We created a corpus of academic phraseology of 2,129 words to help judge whether a word is neutral and general, and created two datasets under two scenarios to verify the feasibility of the proposed model.