Zayne Sprague


pdf bib
Natural Language Deduction through Search over Statement Compositions
Kaj Bostrom | Zayne Sprague | Swarat Chaudhuri | Greg Durrett
Findings of the Association for Computational Linguistics: EMNLP 2022

In settings from fact-checking to question answering, we frequently want to know whether a collection of evidence (premises) entails a hypothesis. Existing methods primarily focus on the end-to-end discriminative version of this task, but less work has treated the generative version in which a model searches over the space of statements entailed by the premises to constructively derive the hypothesis. We propose a system for doing this kind of deductive reasoning in natural language by decomposing the task into separate steps coordinated by a search procedure, producing a tree of intermediate conclusions that faithfully reflects the system’s reasoning process. Our experiments on the EntailmentBank dataset (Dalvi et al., 2021) demonstrate that the proposed system can successfully prove true statements while rejecting false ones. Moreover, it produces natural language explanations with a 17% absolute higher step validity than those produced by an end-to-end T5 model.

pdf bib
Natural Language Deduction with Incomplete Information
Zayne Sprague | Kaj Bostrom | Swarat Chaudhuri | Greg Durrett
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

A growing body of work studies how to answer a question or verify a claim by generating a natural language “proof:” a chain of deductive inferences yielding the answer based on a set of premises. However, these methods can only make sound deductions when they follow from evidence that is given. We propose a new system that can handle the underspecified setting where not all premises are stated at the outset; that is, additional assumptions need to be materialized to prove a claim. By using a natural language generation model to abductively infer a premise given another premise and a conclusion, we can impute missing pieces of evidence needed for the conclusion to be true. Our system searches over two fringes in a bidirectional fashion, interleaving deductive (forward-chaining) and abductive (backward-chaining) generation steps. We sample multiple possible outputs for each step to achieve coverage of the search space, at the same time ensuring correctness by filtering low-quality generations with a round-trip validation procedure. Results on a modified version of the EntailmentBank dataset and a new dataset called Everyday Norms: Why Not? Show that abductive generation with validation can recover premises across in- and out-of-domain settings.