This study addresses a challenge in morphological segmentation: accurately segmenting words in languages with rich morphology. Current probabilistic methods, such as Morfessor, often produce results that lack consistency with human-segmented words. Our study adds some steps to the Morfessor segmentation process to consider invalid morphemes and borrowed words from other languages to improve morphological segmentation significantly. Comparing our idea to the results obtained from Morfessor demonstrates its efficiency, leading to more accurate morphology segmentation. This is particularly evident in the case of Turkish, highlighting the potential for further advancements in morpheme segmentation for morphologically rich languages.
The aim of the Universal Anaphora initiative is to push forward the state of the art in anaphora and anaphora resolution by expanding the aspects of anaphoric interpretation which are or can be reliably annotated in anaphoric corpora, producing unified standards to annotate and encode these annotations, delivering datasets encoded according to these standards, and developing methods for evaluating models that carry out this type of interpretation. Although several papers on aspects of the initiative have appeared, no overall description of the initiative’s goals, proposals and achievements has been published yet except as an online draft. This paper aims to fill this gap, as well as to discuss its progress so far.
The paper proposes a novel data representation inspired by Universal Dependencies (UD) syntactic trees, which are extended to capture the internal morphological structure of word forms. As a result, morphological segmentation is incorporated within the UD representation of syntactic dependencies. To derive the proposed data structure we leverage existing annotation of UD treebanks as well as available resources for segmentation, and we select 10 languages to work with in the presented case study. Additionally, statistical analysis reveals a robust correlation between morphs and sets of morphological features of words. We thus align the morphs to the observed feature inventories capturing the morphological meaning of morphs. Through the beneficial exploitation of cross-lingual correspondence of morphs, the proposed syntactic representation based on morphological segmentation proves to enhance the comparability of sentence structures across languages.
This paper summarizes the second edition of the shared task on multilingual coreference resolution, held with the CRAC 2023 workshop. Just like last year, participants of the shared task were to create trainable systems that detect mentions and group them based on identity coreference; however, this year’s edition uses a slightly different primary evaluation score, and is also broader in terms of covered languages: version 1.1 of the multilingual collection of harmonized coreference resources CorefUD was used as the source of training and evaluation data this time, with 17 datasets for 12 languages. 7 systems competed in this shared task.
We present a novel method for unsupervised cognate/borrowing identification from monolingual corpora designed for low and extremely low resource scenarios, based on combining noisy semantic signals from joint bilingual spaces with orthographic cues modelling sound change. We apply our method to the North Indian dialect continuum, containing several dozens of dialects and languages spoken by more than 100 million people. Many of these languages are zero-resource and therefore natural language processing for them is non-existent. We first collect monolingual data for 26 Indic languages, 16 of which were previously zero-resource, and perform exploratory character, lexical and subword cross-lingual alignment experiments for the first time at this scale on this dialect continuum. We create bilingual evaluation lexicons against Hindi for 20 of the languages. We then apply our cognate identification method on the data, and show that our method outperforms both traditional orthography baselines as well as EM-style learnt edit distance matrices. To the best of our knowledge, this is the first work to combine traditional orthographic cues with noisy bilingual embeddings to tackle unsupervised cognate detection in a (truly) low-resource setup, showing that even noisy bilingual embeddings can act as good guides for this task. We release our multilingual dialect corpus, called HinDialect, as well as our scripts for evaluation data collection and cognate induction.
This paper presents an overview of the shared task on multilingual coreference resolution associated with the CRAC 2022 workshop. Shared task participants were supposed to develop trainable systems capable of identifying mentions and clustering them according to identity coreference. The public edition of CorefUD 1.0, which contains 13 datasets for 10 languages, was used as the source of training and evaluation data. The CoNLL score used in previous coreference-oriented shared tasks was used as the main evaluation metric. There were 8 coreference prediction systems submitted by 5 participating teams; in addition, there was a competitive Transformer-based baseline system provided by the organizers at the beginning of the shared task. The winner system outperformed the baseline by 12 percentage points (in terms of the CoNLL scores averaged across all datasets for individual languages).
Our work aims at developing a multilingual data resource for morphological segmentation. We present a survey of 17 existing data resources relevant for segmentation in 32 languages, and analyze diversity of how individual linguistic phenomena are captured across them. Inspired by the success of Universal Dependencies, we propose a harmonized scheme for segmentation representation, and convert the data from the studied resources into this common scheme. Harmonized versions of resources available under free licenses are published as a collection called UniSegments 1.0.
Words of any language are to some extent related thought the ways they are formed. For instance, the verb ‘exempl-ify’ and the noun ‘example-s’ are both based on the word ‘example’, but the verb is derived from it, while the noun is inflected. In Natural Language Processing of Russian, the inflection is satisfactorily processed; however, there are only a few machine-trackable resources that capture derivations even though Russian has both of these morphological processes very rich. Therefore, we devote this paper to improving one of the methods of constructing such resources and to the application of the method to a Russian lexicon, which results in the creation of the largest lexical resource of Russian derivational relations. The resulting database dubbed DeriNet.RU includes more than 300 thousand lexemes connected with more than 164 thousand binary derivational relations. To create such data, we combined the existing machine-learning methods that we improved to manage this goal. The whole approach is evaluated on our newly created data set of manual, parallel annotation. The resulting DeriNet.RU is freely available under an open license agreement.
Recent advances in standardization for annotated language resources have led to successful large scale efforts, such as the Universal Dependencies (UD) project for multilingual syntactically annotated data. By comparison, the important task of coreference resolution, which clusters multiple mentions of entities in a text, has yet to be standardized in terms of data formats or annotation guidelines. In this paper we present CorefUD, a multilingual collection of corpora and a standardized format for coreference resolution, compatible with morphosyntactic annotations in the UD framework and including facilities for related tasks such as named entity recognition, which forms a first step in the direction of convergence for coreference resolution across languages.
Word embeddings are growing to be a crucial resource in the field of NLP for any language. This work introduces a novel technique for static subword embeddings transfer for Indic languages from a relatively higher resource language to a genealogically related low resource language. We primarily work with HindiMarathi, simulating a low-resource scenario for Marathi, and confirm observed trends on Nepali. We demonstrate the consistent benefits of unsupervised morphemic segmentation on both source and target sides over the treatment performed by fastText. Our best-performing approach uses an EM-style approach to learning bilingual subword embeddings; we also show, for the first time, that a trivial “copyand-paste” embeddings transfer based on even perfect bilingual lexicons is inadequate in capturing language-specific relationships. We find that our approach substantially outperforms the fastText baselines for both Marathi and Nepali on the Word Similarity task as well as WordNetBased Synonymy Tests; on the former task, its performance for Marathi is close to that of pretrained fastText embeddings that use three orders of magnitude more Marathi data.
The SIGMORPHON 2022 shared task on morpheme segmentation challenged systems to decompose a word into a sequence of morphemes and covered most types of morphology: compounds, derivations, and inflections. Subtask 1, word-level morpheme segmentation, covered 5 million words in 9 languages (Czech, English, Spanish, Hungarian, French, Italian, Russian, Latin, Mongolian) and received 13 system submissions from 7 teams and the best system averaged 97.29% F1 score across all languages, ranging English (93.84%) to Latin (99.38%). Subtask 2, sentence-level morpheme segmentation, covered 18,735 sentences in 3 languages (Czech, English, Mongolian), received 10 system submissions from 3 teams, and the best systems outperformed all three state-of-the-art subword tokenization methods (BPE, ULM, Morfessor2) by 30.71% absolute. To facilitate error analysis and support any type of future studies, we released all system predictions, the evaluation script, and all gold standard datasets.
One can find dozens of data resources for various languages in which coreference - a relation between two or more expressions that refer to the same real-world entity - is manually annotated. One could also assume that such expressions usually constitute syntactically meaningful units; however, mention spans have been annotated simply by delimiting token intervals in most coreference projects, i.e., independently of any syntactic representation. We argue that it could be advantageous to make syntactic and coreference annotations convergent in the long term. We present a pilot empirical study focused on matches and mismatches between hand-annotated linear mention spans and automatically parsed syntactic trees that follow Universal Dependencies conventions. The study covers 9 datasets for 8 different languages.
This article gives an overview of how sentence meaning is represented in eleven deep-syntactic frameworks, ranging from those based on linguistic theories elaborated for decades to rather lightweight NLP-motivated approaches. We outline the most important characteristics of each framework and then discuss how particular language phenomena are treated across those frameworks, while trying to shed light on commonalities as well as differences.
Morphological segmentation of words is the process of dividing a word into smaller units called morphemes; it is tricky especially when a morphologically rich or polysynthetic language is under question. In this work, we designed and evaluated several Recurrent Neural Network (RNN) based models as well as various other machine learning based approaches for the morphological segmentation task. We trained our models using annotated segmentation lexicons. To evaluate the effect of the training data size on our models, we decided to create a large hand-annotated morphologically segmented corpus of Persian words, which is, to the best of our knowledge, the first and the only segmentation lexicon for the Persian language. In the experimental phase, using the hand-annotated Persian lexicon and two smaller similar lexicons for Czech and Finnish languages, we evaluated the effect of the training data size, different hyper-parameters settings as well as different RNN-based models.
We once had a corp, or should we say, it once had us They showed us its tags, isn’t it great, unified tags They asked us to parse and they told us to use everything So we looked around and we noticed there was near nothing We took other langs, bitext aligned: words one-to-one We played for two weeks, and then they said, here is the test The parser kept training till morning, just until deadline So we had to wait and hope what we get would be just fine And, when we awoke, the results were done, we saw we’d won So, we wrote this paper, isn’t it good, Norwegian wood.
The paper describes the system for coreference resolution in German and Russian, trained exclusively on coreference relations project ed through a parallel corpus from English. The resolver operates on the level of deep syntax and makes use of multiple specialized models. It achieves 32 and 22 points in terms of CoNLL score for Russian and German, respectively. Analysis of the evaluation results show that the resolver for Russian is able to preserve 66% of the English resolver’s quality in terms of CoNLL score. The system was submitted to the Closed track of the CORBON 2017 Shared task.
Part-of-speech (POS) induction is one of the most popular tasks in research on unsupervised NLP. Various unsupervised and semi-supervised methods have been proposed to tag an unseen language. However, many of them require some partial understanding of the target language because they rely on dictionaries or parallel corpora such as the Bible. In this paper, we propose a different method named delexicalized tagging, for which we only need a raw corpus of the target language. We transfer tagging models trained on annotated corpora of one or more resource-rich languages. We employ language-independent features such as word length, frequency, neighborhood entropy, character classes (alphabetic vs. numeric vs. punctuation) etc. We demonstrate that such features can, to certain extent, serve as predictors of the part of speech, represented by the universal POS tag.
The paper deals with merging two complementary resources of morphological data previously existing for Czech, namely the inflectional dictionary MorfFlex CZ and the recently developed lexical network DeriNet. The MorfFlex CZ dictionary has been used by a morphological analyzer capable of analyzing/generating several million Czech word forms according to the rules of Czech inflection. The DeriNet network contains several hundred thousand Czech lemmas interconnected with links corresponding to derivational relations (relations between base words and words derived from them). After summarizing basic characteristics of both resources, the process of merging is described, focusing on both rather technical aspects (growth of the data, measuring the quality of newly added derivational relations) and linguistic issues (treating lexical homonymy and vowel/consonant alternations). The resulting resource contains 970 thousand lemmas connected with 715 thousand derivational relations and is publicly available on the web under the CC-BY-NC-SA license. The data were incorporated in the MorphoDiTa library version 2.0 (which provides morphological analysis, generation, tagging and lemmatization for Czech) and can be browsed and searched by two web tools (DeriNet Viewer and DeriNet Search tool).
In the present paper, we describe the development of the lexical network DeriNet, which captures core word-formation relations on the set of around 266 thousand Czech lexemes. The network is currently limited to derivational relations because derivation is the most frequent and most productive word-formation process in Czech. This limitation is reflected in the architecture of the network: each lexeme is allowed to be linked up with just a single base word; composition as well as combined processes (composition with derivation) are thus not included. After a brief summarization of theoretical descriptions of Czech derivation and the state of the art of NLP approaches to Czech derivation, we discuss the linguistic background of the network and introduce the formal structure of the network and the semi-automatic annotation procedure. The network was initialized with a set of lexemes whose existence was supported by corpus evidence. Derivational links were created using three sources of information: links delivered by a tool for morphological analysis, links based on an automatically discovered set of derivation rules, and on a grammar-based set of rules. Finally, we propose some research topics which could profit from the existence of such lexical network.
We present HamleDT 2.0 (HArmonized Multi-LanguagE Dependency Treebank). HamleDT 2.0 is a collection of 30 existing treebanks harmonized into a common annotation style, the Prague Dependencies, and further transformed into Stanford Dependencies, a treebank annotation style that became popular in recent years. We use the newest basic Universal Stanford Dependencies, without added language-specific subtypes. We describe both of the annotation styles, including adjustments that were necessary to make, and provide details about the conversion process. We also discuss the differences between the two styles, evaluating their advantages and disadvantages, and note the effects of the differences on the conversion. We regard the stanfordization as generally successful, although we admit several shortcomings, especially in the distinction between direct and indirect objects, that have to be addressed in future. We release part of HamleDT 2.0 freely; we are not allowed to redistribute the whole dataset, but we do provide the conversion pipeline.
We have built a corpus containing texts in 106 languages from texts available on the Internet and on Wikipedia. The W2C Web Corpus contains 54.7~GB of text and the W2C Wiki Corpus contains 8.5~GB of text. The W2C Web Corpus contains more than 100~MB of text available for 75 languages. At least 10~MB of text is available for 100 languages. These corpora are a unique data source for linguists, since they outclass all published works both in the size of the material collected and the number of languages covered. This language data resource can be of use particularly to researchers specialized in multilingual technologies development. We also developed software that greatly simplifies the creation of a new text corpus for a given language, using text materials freely available on the Internet. Special attention was given to components for filtering and de-duplication that allow to keep the material quality very high.
We propose HamleDT ― HArmonized Multi-LanguagE Dependency Treebank. HamleDT is a compilation of existing dependency treebanks (or dependency conversions of other treebanks), transformed so that they all conform to the same annotation style. While the license terms prevent us from directly redistributing the corpora, most of them are easily acquirable for research purposes. What we provide instead is the software that normalizes tree structures in the data obtained by the user from their original providers.
Annotated corpora such as treebanks are important for the development of parsers, language applications as well as understanding of the language itself. Only very few languages possess these scarce resources. In this paper, we describe our efforts in syntactically annotating a small corpora (600 sentences) of Tamil language. Our annotation is similar to Prague Dependency Treebank (PDT) and consists of annotation at 2 levels or layers: (i) morphological layer (m-layer) and (ii) analytical layer (a-layer). For both the layers, we introduce annotation schemes i.e. positional tagging for m-layer and dependency relations for a-layers. Finally, we discuss some of the issues in treebank development for Tamil.
We introduce a substantial update of the Prague Czech-English Dependency Treebank, a parallel corpus manually annotated at the deep syntactic layer of linguistic representation. The English part consists of the Wall Street Journal (WSJ) section of the Penn Treebank. The Czech part was translated from the English source sentence by sentence. This paper gives a high level overview of the underlying linguistic theory (the so-called tectogrammatical annotation) with some details of the most important features like valency annotation, ellipsis reconstruction or coreference.
CzEng 1.0 is an updated release of our Czech-English parallel corpus, freely available for non-commercial research or educational purposes. In this release, we approximately doubled the corpus size, reaching 15 million sentence pairs (about 200 million tokens per language). More importantly, we carefully filtered the data to reduce the amount of non-matching sentence pairs. CzEng 1.0 is automatically aligned at the level of sentences as well as words. We provide not only the plain text representation, but also automatic morphological tags, surface syntactic as well as deep syntactic dependency parse trees and automatic co-reference links in both English and Czech. This paper describes key properties of the released resource including the distribution of text domains, the corpus data formats, and a toolkit to handle the provided rich annotation. We also summarize the procedure of the rich annotation (incl. co-reference resolution) and of the automatic filtering. Finally, we provide some suggestions on exploiting such an automatically annotated sentence-parallel corpus.
CzEng 0.9 is the third release of a large parallel corpus of Czech and English. For the current release, CzEng was extended by significant amount of texts from various types of sources, including parallel web pages, electronically available books and subtitles. This paper describes and evaluates filtering techniques employed in the process in order to avoid misaligned or otherwise damaged parallel sentences in the collection. We estimate the precision and recall of two sets of filters. The first set was used to process the data before their inclusion into CzEng. The filters from the second set were newly created to improve the filtering process for future releases of CzEng. Given the overall amount and variance of sources of the data, our experiments illustrate the utility of parallel data sources with respect to extractable parallel segments. As a similar behaviour can be expected for other language pairs, our results can be interpreted as guidelines indicating which sources should other researchers exploit first.
This paper describes CzEng 0.7, a new release of Czech-English parallel corpus freely available for research and educational purposes. We provide basic statistics of the corpus and focus on data produced by a community of volunteers. Anonymous contributors manually correct the output of a machine translation (MT) system, generating on average 2000 sentences a month, 70% of which are indeed correct translations. We compare the utility of community-supplied and of professionally translated training data for a baseline English-to-Czech MT system.
The paper presents the initial release of the Slovene Dependency Treebank, currently containing 2000 sentences or 30.000 words. Ourapproach to annotation is based on the Prague Dependency Treebank, which serves as an excellent model due to the similarity of the languages, the existence of a detailed annotation guide and an annotation editor. The initial treebank contains a portion of theMULTEXT-East parallel word-level annotated corpus, namely the firstpart of the Slovene translation of Orwell's 1984. This corpus was first parsed automatically, to arrive at the initial analytic level dependency trees. These were then hand corrected using the tree editorTrEd; simultaneously, the Czech annotation manual was modified forSlovene. The current version is available in XML/TEI, as well asderived formats, and has been used in a comparative evaluation using the MALT parser, and as one of the languages present in the CoNLL-Xshared task on dependency parsing. The paper also discusses further work, in the first instance the composition of the corpus to be annotated next.
The main objective of this paper is to introduce an alternation-based model of valency lexicon of Czech verbs VALLEX. Alternations describe regular changes in valency structure of verbs -- they are seen as transformations taking one lexical unit and return a modified lexical unit as a result. We characterize and exemplify syntactically-based and semantically-based' alternations and their effects on verb argument structure. The alternation-based model allows to distinguish a minimal form of lexicon, which provides compact characterization of valency structure of Czech verbs, and an expanded form of lexicon useful for some applications.