Zenan Xu


2021

pdf bib
Syntax-Enhanced Pre-trained Model
Zenan Xu | Daya Guo | Duyu Tang | Qinliang Su | Linjun Shou | Ming Gong | Wanjun Zhong | Xiaojun Quan | Daxin Jiang | Nan Duan
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

We study the problem of leveraging the syntactic structure of text to enhance pre-trained models such as BERT and RoBERTa. Existing methods utilize syntax of text either in the pre-training stage or in the fine-tuning stage, so that they suffer from discrepancy between the two stages. Such a problem would lead to the necessity of having human-annotated syntactic information, which limits the application of existing methods to broader scenarios. To address this, we present a model that utilizes the syntax of text in both pre-training and fine-tuning stages. Our model is based on Transformer with a syntax-aware attention layer that considers the dependency tree of the text. We further introduce a new pre-training task of predicting the syntactic distance among tokens in the dependency tree. We evaluate the model on three downstream tasks, including relation classification, entity typing, and question answering. Results show that our model achieves state-of-the-art performance on six public benchmark datasets. We have two major findings. First, we demonstrate that infusing automatically produced syntax of text improves pre-trained models. Second, global syntactic distances among tokens bring larger performance gains compared to local head relations between contiguous tokens.

2020

pdf bib
Embedding Dynamic Attributed Networks by Modeling the Evolution Processes
Zenan Xu | Zijing Ou | Qinliang Su | Jianxing Yu | Xiaojun Quan | ZhenKun Lin
Proceedings of the 28th International Conference on Computational Linguistics

Network embedding has recently emerged as a promising technique to embed nodes of a network into low-dimensional vectors. While fairly successful, most existing works focus on the embedding techniques for static networks. But in practice, there are many networks that are evolving over time and hence are dynamic, e.g., the social networks. To address this issue, a high-order spatio-temporal embedding model is developed to track the evolutions of dynamic networks. Specifically, an activeness-aware neighborhood embedding method is first proposed to extract the high-order neighborhood information at each given timestamp. Then, an embedding prediction framework is further developed to capture the temporal correlations, in which the attention mechanism is employed instead of recurrent neural networks (RNNs) for its efficiency in computing and flexibility in modeling. Extensive experiments are conducted on four real-world datasets from three different areas. It is shown that the proposed method outperforms all the baselines by a substantial margin for the tasks of dynamic link prediction and node classification, which demonstrates the effectiveness of the proposed methods on tracking the evolutions of dynamic networks.

pdf bib
Reasoning Over Semantic-Level Graph for Fact Checking
Wanjun Zhong | Jingjing Xu | Duyu Tang | Zenan Xu | Nan Duan | Ming Zhou | Jiahai Wang | Jian Yin
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Fact checking is a challenging task because verifying the truthfulness of a claim requires reasoning about multiple retrievable evidence. In this work, we present a method suitable for reasoning about the semantic-level structure of evidence. Unlike most previous works, which typically represent evidence sentences with either string concatenation or fusing the features of isolated evidence sentences, our approach operates on rich semantic structures of evidence obtained by semantic role labeling. We propose two mechanisms to exploit the structure of evidence while leveraging the advances of pre-trained models like BERT, GPT or XLNet. Specifically, using XLNet as the backbone, we first utilize the graph structure to re-define the relative distances of words, with the intuition that semantically related words should have short distances. Then, we adopt graph convolutional network and graph attention network to propagate and aggregate information from neighboring nodes on the graph. We evaluate our system on FEVER, a benchmark dataset for fact checking, and find that rich structural information is helpful and both our graph-based mechanisms improve the accuracy. Our model is the state-of-the-art system in terms of both official evaluation metrics, namely claim verification accuracy and FEVER score.

pdf bib
Neural Deepfake Detection with Factual Structure of Text
Wanjun Zhong | Duyu Tang | Zenan Xu | Ruize Wang | Nan Duan | Ming Zhou | Jiahai Wang | Jian Yin
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Deepfake detection, the task of automatically discriminating machine-generated text, is increasingly critical with recent advances in natural language generative models. Existing approaches to deepfake detection typically represent documents with coarse-grained representations. However, they struggle to capture factual structures of documents, which is a discriminative factor between machine-generated and human-written text according to our statistical analysis. To address this, we propose a graph-based model that utilizes the factual structure of a document for deepfake detection of text. Our approach represents the factual structure of a given document as an entity graph, which is further utilized to learn sentence representations with a graph neural network. Sentence representations are then composed to a document representation for making predictions, where consistent relations between neighboring sentences are sequentially modeled. Results of experiments on two public deepfake datasets show that our approach significantly improves strong base models built with RoBERTa. Model analysis further indicates that our model can distinguish the difference in the factual structure between machine-generated text and human-written text.

2019

pdf bib
A Deep Neural Information Fusion Architecture for Textual Network Embeddings
Zenan Xu | Qinliang Su | Xiaojun Quan | Weijia Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Textual network embeddings aim to learn a low-dimensional representation for every node in the network so that both the structural and textual information from the networks can be well preserved in the representations. Traditionally, the structural and textual embeddings were learned by models that rarely take the mutual influences between them into account. In this paper, a deep neural architecture is proposed to effectively fuse the two kinds of informations into one representation. The novelties of the proposed architecture are manifested in the aspects of a newly defined objective function, the complementary information fusion method for structural and textual features, and the mutual gate mechanism for textual feature extraction. Experimental results show that the proposed model outperforms the comparing methods on all three datasets.