Zeng Yang
2023
Focusing, Bridging and Prompting for Few-shot Nested Named Entity Recognition
Yuanyuan Xu
|
Zeng Yang
|
Linhai Zhang
|
Deyu Zhou
|
Tiandeng Wu
|
Rong Zhou
Findings of the Association for Computational Linguistics: ACL 2023
Few-shot named entity recognition (NER), identifying named entities with a small number of labeled data, has attracted much attention. Frequently, entities are nested within each other. However, most of the existing work on few-shot NER addresses flat entities instead of nested entities. To tackle nested NER in a few-shot setting, it is crucial to utilize the limited labeled data to mine unique features of nested entities, such as the relationship between inner and outer entities and contextual position information. Therefore, in this work, we propose a novel method based on focusing, bridging and prompting for few-shot nested NER without using source domain data. Both focusing and bridging components provide accurate candidate spans for the prompting component. The prompting component leverages the unique features of nested entities to classify spans based on soft prompts and contrastive learning. Experimental results show that the proposed approach achieves state-of-the-art performance consistently on the four benchmark datasets (ACE2004, ACE2005, GENIA and KBP2017) and outperforms several competing baseline models on F1-score by 9.33% on ACE2004, 6.17% on ACE2005, 9.40% on GENIA and 5.12% on KBP2017 on the 5-shot setting.
2022
SEE-Few: Seed, Expand and Entail for Few-shot Named Entity Recognition
Zeng Yang
|
Linhai Zhang
|
Deyu Zhou
Proceedings of the 29th International Conference on Computational Linguistics
Few-shot named entity recognition (NER) aims at identifying named entities based on only few labeled instances. Current few-shot NER methods focus on leveraging existing datasets in the rich-resource domains which might fail in a training-from-scratch setting where no source-domain data is used. To tackle training-from-scratch setting, it is crucial to make full use of the annotation information (the boundaries and entity types). Therefore, in this paper, we propose a novel multi-task (Seed, Expand and Entail) learning framework, SEE-Few, for Few-shot NER without using source domain data. The seeding and expanding modules are responsible for providing as accurate candidate spans as possible for the entailing module. The entailing module reformulates span classification as a textual entailment task, leveraging both the contextual clues and entity type information. All the three modules share the same text encoder and are jointly learned. Experimental results on several benchmark datasets under the training-from-scratch setting show that the proposed method outperformed several state-of-the-art few-shot NER methods with a large margin. Our code is available at https://github.com/unveiled-the-red-hat/SEE-Few.