Zewei Sun


pdf bib
Controlling Styles in Neural Machine Translation with Activation Prompt
Yifan Wang | Zewei Sun | Shanbo Cheng | Weiguo Zheng | Mingxuan Wang
Findings of the Association for Computational Linguistics: ACL 2023

Controlling styles in neural machine translation (NMT) has attracted wide attention, as it is crucial for enhancing user experience. Earlier studies on this topic typically concentrate on regulating the level of formality and achieve some progress in this area. However, they still encounter two major challenges. The first is the difficulty in style evaluation. The style comprises various aspects such as lexis, syntax, and others that provide abundant information. Nevertheless, only formality has been thoroughly investigated. The second challenge involves excessive dependence on incremental adjustments, particularly when new styles are necessary. To address both challenges, this paper presents a new benchmark and approach. A multiway stylized machine translation (MSMT) benchmark is introduced, incorporating diverse categories of styles across four linguistic domains. Then, we propose a method named style activation prompt (StyleAP) by retrieving prompts from stylized monolingual corpus, which does not require extra fine-tuning. Experiments show that StyleAP could effectively control the style of translation and achieve remarkable performance.

pdf bib
Beyond Triplet: Leveraging the Most Data for Multimodal Machine Translation
Yaoming Zhu | Zewei Sun | Shanbo Cheng | Luyang Huang | Liwei Wu | Mingxuan Wang
Findings of the Association for Computational Linguistics: ACL 2023

Multimodal machine translation (MMT) aims to improve translation quality by incorporating information from other modalities, such as vision. Previous MMT systems focus on better access and use of visual information and tend to validate their methods on image-related datasets. However, these studies face two challenges. First, they can only utilize a limited amount of data that is composed of bilingual texts and images (referred to as “triple data”), which is scarce. Second, current benchmarks for MMT are restricted and do not correspond to realistic scenarios. Therefore, this paper correspondingly establishes new methods and a new dataset for MMT. We propose a novel framework for MMT that addresses these challenges by utilizing large-scale non-triple data, such as monolingual image-text and parallel text-only data. Additionally, we construct a new e-commercial multimodal translation dataset, named EMMT, of which the test set is specifically designed to include ambiguous words that require visual context for accurate translation. Experiments show that our method is well-suited for real-world scenarios and can significantly improve translation performance with more non-triple data. In addition, our model also rivals or surpasses various SOTA models in conventional multimodal translation benchmarks.

pdf bib
BigVideo: A Large-scale Video Subtitle Translation Dataset for Multimodal Machine Translation
Liyan Kang | Luyang Huang | Ningxin Peng | Peihao Zhu | Zewei Sun | Shanbo Cheng | Mingxuan Wang | Degen Huang | Jinsong Su
Findings of the Association for Computational Linguistics: ACL 2023

We present a large-scale video subtitle translation dataset, *BigVideo*, to facilitate the study of multi-modality machine translation. Compared with the widely used *How2* and *VaTeX* datasets, *BigVideo* is more than 10 times larger, consisting of 4.5 million sentence pairs and 9,981 hours of videos. We also introduce two deliberately designed test sets to verify the necessity of visual information: *Ambiguous* with the presence of ambiguous words, and *Unambiguous* in which the text context is self-contained for translation. To better model the common semantics shared across texts and videos, we introduce a contrastive learning method in the cross-modal encoder. Extensive experiments on the *BigVideo* shows that: a) Visual information consistently improves the NMT model in terms of BLEU, BLEURT and COMET on both Ambiguous and Unambiguous test sets. b) Visual information helps disambiguation, compared to the strong text baseline on terminology-targeted scores and human evaluation.


pdf bib
Alleviating the Inequality of Attention Heads for Neural Machine Translation
Zewei Sun | Shujian Huang | Xinyu Dai | Jiajun Chen
Proceedings of the 29th International Conference on Computational Linguistics

Recent studies show that the attention heads in Transformer are not equal. We relate this phenomenon to the imbalance training of multi-head attention and the model dependence on specific heads. To tackle this problem, we propose a simple masking method: HeadMask, in two specific ways. Experiments show that translation improvements are achieved on multiple language pairs. Subsequent empirical analyses also support our assumption and confirm the effectiveness of the method.

pdf bib
Rethinking Document-level Neural Machine Translation
Zewei Sun | Mingxuan Wang | Hao Zhou | Chengqi Zhao | Shujian Huang | Jiajun Chen | Lei Li
Findings of the Association for Computational Linguistics: ACL 2022

This paper does not aim at introducing a novel model for document-level neural machine translation. Instead, we head back to the original Transformer model and hope to answer the following question: Is the capacity of current models strong enough for document-level translation? Interestingly, we observe that the original Transformer with appropriate training techniques can achieve strong results for document translation, even with a length of 2000 words. We evaluate this model and several recent approaches on nine document-level datasets and two sentence-level datasets across six languages. Experiments show that document-level Transformer models outperforms sentence-level ones and many previous methods in a comprehensive set of metrics, including BLEU, four lexical indices, three newly proposed assistant linguistic indicators, and human evaluation.


pdf bib
Multilingual Translation via Grafting Pre-trained Language Models
Zewei Sun | Mingxuan Wang | Lei Li
Findings of the Association for Computational Linguistics: EMNLP 2021

Can pre-trained BERT for one language and GPT for another be glued together to translate texts? Self-supervised training using only monolingual data has led to the success of pre-trained (masked) language models in many NLP tasks. However, directly connecting BERT as an encoder and GPT as a decoder can be challenging in machine translation, for GPT-like models lack a cross-attention component that is needed in seq2seq decoders. In this paper, we propose Graformer to graft separately pre-trained (masked) language models for machine translation. With monolingual data for pre-training and parallel data for grafting training, we maximally take advantage of the usage of both types of data. Experiments on 60 directions show that our method achieves average improvements of 5.8 BLEU in x2en and 2.9 BLEU in en2x directions comparing with the multilingual Transformer of the same size.