Zewei Sun


2022

pdf bib
Alleviating the Inequality of Attention Heads for Neural Machine Translation
Zewei Sun | Shujian Huang | Xinyu Dai | Jiajun Chen
Proceedings of the 29th International Conference on Computational Linguistics

Recent studies show that the attention heads in Transformer are not equal. We relate this phenomenon to the imbalance training of multi-head attention and the model dependence on specific heads. To tackle this problem, we propose a simple masking method: HeadMask, in two specific ways. Experiments show that translation improvements are achieved on multiple language pairs. Subsequent empirical analyses also support our assumption and confirm the effectiveness of the method.

pdf bib
Rethinking Document-level Neural Machine Translation
Zewei Sun | Mingxuan Wang | Hao Zhou | Chengqi Zhao | Shujian Huang | Jiajun Chen | Lei Li
Findings of the Association for Computational Linguistics: ACL 2022

This paper does not aim at introducing a novel model for document-level neural machine translation. Instead, we head back to the original Transformer model and hope to answer the following question: Is the capacity of current models strong enough for document-level translation? Interestingly, we observe that the original Transformer with appropriate training techniques can achieve strong results for document translation, even with a length of 2000 words. We evaluate this model and several recent approaches on nine document-level datasets and two sentence-level datasets across six languages. Experiments show that document-level Transformer models outperforms sentence-level ones and many previous methods in a comprehensive set of metrics, including BLEU, four lexical indices, three newly proposed assistant linguistic indicators, and human evaluation.

2021

pdf bib
Multilingual Translation via Grafting Pre-trained Language Models
Zewei Sun | Mingxuan Wang | Lei Li
Findings of the Association for Computational Linguistics: EMNLP 2021

Can pre-trained BERT for one language and GPT for another be glued together to translate texts? Self-supervised training using only monolingual data has led to the success of pre-trained (masked) language models in many NLP tasks. However, directly connecting BERT as an encoder and GPT as a decoder can be challenging in machine translation, for GPT-like models lack a cross-attention component that is needed in seq2seq decoders. In this paper, we propose Graformer to graft separately pre-trained (masked) language models for machine translation. With monolingual data for pre-training and parallel data for grafting training, we maximally take advantage of the usage of both types of data. Experiments on 60 directions show that our method achieves average improvements of 5.8 BLEU in x2en and 2.9 BLEU in en2x directions comparing with the multilingual Transformer of the same size.