Zewen Bai


2023

pdf bib
ZBL2W at SemEval-2023 Task 9: A Multilingual Fine-tuning Model with Data Augmentation for Tweet Intimacy Analysis
Hao Zhang | Youlin Wu | Junyu Lu | Zewen Bai | Jiangming Wu | Hongfei Lin | Shaowu Zhang
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

This paper describes our system used in the SemEval-2023 Task 9 Multilingual Tweet Intimacy Analysis. There are two key challenges in this task: the complexity of multilingual and zero-shot cross-lingual learning, and the difficulty of semantic mining of tweet intimacy. To solve the above problems, our system extracts contextual representations from the pretrained language models, XLM-T, and employs various optimization methods, including adversarial training, data augmentation, ordinal regression loss and special training strategy. Our system ranked 14th out of 54 participating teams on the leaderboard and ranked 10th on predicting languages not in the training data. Our code is available on Github.

pdf bib
DUTIR at SemEval-2023 Task 10: Semi-supervised Learning for Sexism Detection in English
Bingjie Yu | Zewen Bai | Haoran Ji | Shiyi Li | Hao Zhang | Hongfei Lin
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

Sexism is an injustice afflicting women and has become a common form of oppression in social media. In recent years, the automatic detection of sexist instances has been utilized to combat this oppression. The Subtask A of SemEval-2023 Task 10, Explainable Detection of Online Sexism, aims to detect whether an English-language post is sexist. In this paper, we describe our system for the competition. The structure of the classification model is based on RoBERTa, and we further pre-train it on the domain corpus. For fine-tuning, we adopt Unsupervised Data Augmentation (UDA), a semi-supervised learning approach, to improve the robustness of the system. Specifically, we employ Easy Data Augmentation (EDA) method as the noising operation for consistency training. We train multiple models based on different hyperparameter settings and adopt the majority voting method to predict the labels of test entries. Our proposed system achieves a Macro-F1 score of 0.8352 and a ranking of 41/84 on the leaderboard of Subtask A.