Zeyu You
2021
Multiplex Graph Neural Network for Extractive Text Summarization
Baoyu Jing
|
Zeyu You
|
Tao Yang
|
Wei Fan
|
Hanghang Tong
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing
Extractive text summarization aims at extracting the most representative sentences from a given document as its summary. To extract a good summary from a long text document, sentence embedding plays an important role. Recent studies have leveraged graph neural networks to capture the inter-sentential relationship (e.g., the discourse graph) within the documents to learn contextual sentence embedding. However, those approaches neither consider multiple types of inter-sentential relationships (e.g., semantic similarity and natural connection relationships), nor model intra-sentential relationships (e.g, semantic similarity and syntactic relationship among words). To address these problems, we propose a novel Multiplex Graph Convolutional Network (Multi-GCN) to jointly model different types of relationships among sentences and words. Based on Multi-GCN, we propose a Multiplex Graph Summarization (Multi-GraS) model for extractive text summarization. Finally, we evaluate the proposed models on the CNN/DailyMail benchmark dataset to demonstrate effectiveness of our method.
2020
Commonsense Evidence Generation and Injection in Reading Comprehension
Ye Liu
|
Tao Yang
|
Zeyu You
|
Wei Fan
|
Philip S. Yu
Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue
Human tackle reading comprehension not only based on the given context itself but often rely on the commonsense beyond. To empower the machine with commonsense reasoning, in this paper, we propose a Commonsense Evidence Generation and Injection framework in reading comprehension, named CEGI. The framework injects two kinds of auxiliary commonsense evidence into comprehensive reading to equip the machine with the ability of rational thinking. Specifically, we build two evidence generators: one aims to generate textual evidence via a language model; the other aims to extract factual evidence (automatically aligned text-triples) from a commonsense knowledge graph after graph completion. Those evidences incorporate contextual commonsense and serve as the additional inputs to the reasoning model. Thereafter, we propose a deep contextual encoder to extract semantic relationships among the paragraph, question, option, and evidence. Finally, we employ a capsule network to extract different linguistic units (word and phrase) from the relations, and dynamically predict the optimal option based on the extracted units. Experiments on the CosmosQA dataset demonstrate that the proposed CEGI model outperforms the current state-of-the-art approaches and achieves the highest accuracy (83.6%) on the leaderboard.
Search
Co-authors
- Tao Yang 2
- Wei Fan 2
- Ye Liu 1
- Philip S. Yu 1
- Baoyu Jing 1
- show all...