Zhang Lin
2023
Learning “O” Helps for Learning More: Handling the Unlabeled Entity Problem for Class-incremental NER
Ruotian Ma
|
Xuanting Chen
|
Zhang Lin
|
Xin Zhou
|
Junzhe Wang
|
Tao Gui
|
Qi Zhang
|
Xiang Gao
|
Yun Wen Chen
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
As the categories of named entities rapidly increase, the deployed NER models are required to keep updating toward recognizing more entity types, creating a demand for class-incremental learning for NER. Considering the privacy concerns and storage constraints, the standard paradigm for class-incremental NER updates the models with training data only annotated with the new classes, yet the entities from other entity classes are regarded as “Non-entity” (or “O”). In this work, we conduct an empirical study on the “Unlabeled Entity Problem” and find that it leads to severe confusion between “O” and entities, decreasing class discrimination of old classes and declining the model’s ability to learn new classes. To solve the Unlabeled Entity Problem, we propose a novel representation learning method to learn discriminative representations for the entity classes and “O”. Specifically, we propose an entity-aware contrastive learning method that adaptively detects entity clusters in “O”. Furthermore, we propose two effective distance-based relabeling strategies for better learning the old classes. We introduce a more realistic and challenging benchmark for class-incremental NER, and the proposed method achieves up to 10.62% improvement over the baseline methods.
Coarse-to-fine Few-shot Learning for Named Entity Recognition
Ruotian Ma
|
Zhang Lin
|
Xuanting Chen
|
Xin Zhou
|
Junzhe Wang
|
Tao Gui
|
Qi Zhang
|
Xiang Gao
|
Yun Wen Chen
Findings of the Association for Computational Linguistics: ACL 2023
Recently, Few-shot Named Entity Recognition has received wide attention with the growing need for NER models to learn new classes with minimized annotation costs. However, one common yet understudied situation is to transfer a model trained with coarse-grained classes to recognize fine-grained classes, such as separating a product category into sub-classes. We find that existing few-shot NER solutions are not suitable for such a situation since they do not consider the sub-class discrimination during coarse training and various granularity of new classes during few-shot learning. In this work, we introduce the Coarse-to-fine Few-shot NER (C2FNER) task and propose an effective solution. Specifically, during coarse training, we propose a cluster-based prototype margin loss to learn group-wise discriminative representations, so as to benefit fine-grained learning. Targeting various granularity of new classes, we separate the coarse classes into extra-fine clusters and propose a novel prototype retrieval and bootstrapping algorithm to retrieve representative clusters for each fine class. We then adopt a mixture prototype loss to efficiently learn the representations of fine classes. We conduct experiments on both in-domain and cross-domain C2FNER settings with various target granularity, and the proposed method shows superior performance over the baseline methods.