ZhanHui Kang


pdf bib
An Anchor-based Relative Position Embedding Method for Cross-Modal Tasks
Ya Wang | Xingwu Sun | Lian Fengzong | ZhanHui Kang | Chengzhong Xu Xu
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Position Embedding (PE) is essential for transformer to capture the sequence ordering of input tokens. Despite its general effectiveness verified in Natural Language Processing (NLP) and Computer Vision (CV), its application in cross-modal tasks remains unexplored and suffers from two challenges: 1) the input text tokens and image patches are not aligned, 2) the encoding space of each modality is different, making it unavailable for feature comparison. In this paper, we propose a unified position embedding method for these problems, called AnChor-basEd Relative Position Embedding (ACE-RPE), in which we first introduce an anchor locating mechanism to bridge the semantic gap and locate anchors from different modalities. Then we conduct the distance calculation of each text token and image patch by computing their shortest paths from the located anchors. Last, we embed the anchor-based distance to guide the computation of cross-attention. In this way, it calculates cross-modal relative position embedding for cross-modal transformer. Benefiting from ACE-RPE, our method obtains new SOTA results on a wide range of benchmarks, such as Image-Text Retrieval on MS-COCO and Flickr30K, Visual Entailment on SNLI-VE, Visual Reasoning on NLVR2 and Weakly-supervised Visual Grounding on RefCOCO+.


pdf bib
TexSmart: A System for Enhanced Natural Language Understanding
Lemao Liu | Haisong Zhang | Haiyun Jiang | Yangming Li | Enbo Zhao | Kun Xu | Linfeng Song | Suncong Zheng | Botong Zhou | Dick Zhu | Xiao Feng | Tao Chen | Tao Yang | Dong Yu | Feng Zhang | ZhanHui Kang | Shuming Shi
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

This paper introduces TexSmart, a text understanding system that supports fine-grained named entity recognition (NER) and enhanced semantic analysis functionalities. Compared to most previous publicly available text understanding systems and tools, TexSmart holds some unique features. First, the NER function of TexSmart supports over 1,000 entity types, while most other public tools typically support several to (at most) dozens of entity types. Second, TexSmart introduces new semantic analysis functions like semantic expansion and deep semantic representation, that are absent in most previous systems. Third, a spectrum of algorithms (from very fast algorithms to those that are relatively slow but more accurate) are implemented for one function in TexSmart, to fulfill the requirements of different academic and industrial applications. The adoption of unsupervised or weakly-supervised algorithms is especially emphasized, with the goal of easily updating our models to include fresh data with less human annotation efforts.