Zhaofeng He


2023

pdf bib
Prototype-based HyperAdapter for Sample-Efficient Multi-task Tuning
Hao Zhao | Jie Fu | Zhaofeng He
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Parameter-efficient fine-tuning (PEFT) has shown its effectiveness in adapting the pre-trained language models to downstream tasks while only updating a small number of parameters. Despite the success, most existing methods independently adapt to each task without considering knowledge transfer between tasks and are limited to low-data regimes. To overcome this issue, we propose Prototype-based HyperAdapter (PHA), a novel framework built on the adapter-tuning and hypernetwork. It introduces an instance-dense retriever and a prototypical hypernetwork to generate the conditional modules in a sample-efficient manner. This leads to comparable performance improvements against existing PEFT methods on multi-task learning and few-shot transfer learning. More importantly, when the available data size gets smaller, our method outperforms other strong baselines by a large margin. Based on our extensive empirical experiments across various datasets, we demonstrate that PHA strikes a better trade-off between trainable parameters, accuracy on stream tasks, and sample efficiency. Our code is publicly available at https://github.com/Bumble666/PHA

pdf bib
ChatEdit: Towards Multi-turn Interactive Facial Image Editing via Dialogue
Xing Cui | Zekun Li | Pei Li | Yibo Hu | Hailin Shi | Chunshui Cao | Zhaofeng He
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

This paper explores interactive facial image editing through dialogue and presents the ChatEdit benchmark dataset for evaluating image editing and conversation abilities in this context. ChatEdit is constructed from the CelebA-HQ dataset, incorporating annotated multi-turn dialogues corresponding to user editing requests on the images. The dataset is challenging, as it requires the system to dynamically track and edit images based on user requests, while generating appropriate natural language responses. To address these challenges, we propose a framework comprising a dialogue module for tracking user requests as well as generating responses, and an image editing module for editing images accordingly. Unlike previous approaches, our framework directly tracks the user request of the current turn from the entire dialogue history and edits the initial image instead of manipulating the output from the previous turn, mitigating error accumulation and attribute forgetting issues. Extensive experiments on the ChatEdit dataset demonstrate the superiority of our framework over previous methods and also improvement rooms, encouraging future research. We will release the code and data publicly to facilitate advancements in complex interactive facial image editing.

pdf bib
An Adaptive Prompt Generation Framework for Task-oriented Dialogue System
Jun Gao | Liuyu Xiang | Huijia Wu | Han Zhao | Yiqi Tong | Zhaofeng He
Findings of the Association for Computational Linguistics: EMNLP 2023

The de facto way of utilizing black-box large language models (LLMs) to perform various downstream tasks is prompting. However, obtaining suitable prompts for specific tasks is still a challenging problem. While existing LLM-based methods demonstrate promising performance in task-oriented dialogue (TOD) task, they often require manual adjustment in prompt selection, or focus solely on dialogue understanding or generation. To address these issues, we propose an adaptive prompt generation framework to fully unleash the potential of LLMs for the comprehensive TOD system. Firstly, we design a trainable slot generator (TSG) that can generate domain and slot information in the belief state, which serves as prior knowledge for subsequent prompt generation. Next, we propose an adaptive prompt generator (APG) that utilizes the prior knowledge to generate prompts for the LLM, deriving the belief state and system response of the dialogue for evaluation. Finally, we evaluate our framework on the MultiWOZ 2.0 dataset. Extensive experiments demonstrate that our method outperforms existing methods. Our code and data will be released.