Zhaoxuan Tan


2023

pdf bib
BotPercent: Estimating Bot Populations in Twitter Communities
Zhaoxuan Tan | Shangbin Feng | Melanie Sclar | Herun Wan | Minnan Luo | Yejin Choi | Yulia Tsvetkov
Findings of the Association for Computational Linguistics: EMNLP 2023

Twitter bot detection is vital in combating misinformation and safeguarding the integrity of social media discourse. While malicious bots are becoming more and more sophisticated and personalized, standard bot detection approaches are still agnostic to social environments (henceforth, communities) the bots operate at. In this work, we introduce community-specific bot detection, estimating the percentage of bots given the context of a community. Our method—BotPercent—is an amalgamation of Twitter bot detection datasets and feature-, text-, and graph-based models, adjusted to a particular community on Twitter. We introduce an approach that performs confidence calibration across bot detection models, which addresses generalization issues in existing community-agnostic models targeting individual bots and leads to more accurate community-level bot estimations. Experiments demonstrate that BotPercent achieves state-of-the-art performance in community-level Twitter bot detection across both balanced and imbalanced class distribution settings, presenting a less biased estimator of Twitter bot populations within the communities we analyze. We then analyze bot rates in several Twitter groups, including users who engage with partisan news media, political communities in different countries, and more. Our results reveal that the presence of Twitter bots is not homogeneous, but exhibiting a spatial-temporal distribution with considerable heterogeneity that should be taken into account for content moderation and social media policy making. The implementation of BotPercent is available at https://github.com/TamSiuhin/BotPercent.

pdf bib
Detecting Spoilers in Movie Reviews with External Movie Knowledge and User Networks
Heng Wang | Wenqian Zhang | Yuyang Bai | Zhaoxuan Tan | Shangbin Feng | Qinghua Zheng | Minnan Luo
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Online movie review platforms are providing crowdsourced feedback for the film industry and the general public, while spoiler reviews greatly compromise user experience. Although preliminary research efforts were made to automatically identify spoilers, they merely focus on the review content itself, while robust spoiler detection requires putting the review into the context of facts and knowledge regarding movies, user behavior on film review platforms, and more. In light of these challenges, we first curate a large-scale network-based spoiler detection dataset LCS and a comprehensive and up-to-date movie knowledge base UKM. We then propose MVSD, a novel spoiler detection model that takes into account the external knowledge about movies and user activities on movie review platforms. Specifically, MVSD constructs three interconnecting heterogeneous information networks to model diverse data sources and their multi-view attributes, while we design and employ a novel heterogeneous graph neural network architecture for spoiler detection as node-level classification. Extensive experiments demonstrate that MVSD advances the state-of-the-art on two spoiler detection datasets, while the introduction of external knowledge and user interactions help ground robust spoiler detection.

pdf bib
KALM: Knowledge-Aware Integration of Local, Document, and Global Contexts for Long Document Understanding
Shangbin Feng | Zhaoxuan Tan | Wenqian Zhang | Zhenyu Lei | Yulia Tsvetkov
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

With the advent of pre-trained language models (LMs), increasing research efforts have been focusing on infusing commonsense and domain-specific knowledge to prepare LMs for downstream tasks. These works attempt to leverage knowledge graphs, the de facto standard of symbolic knowledge representation, along with pre-trained LMs. While existing approaches leverage external knowledge, it remains an open question how to jointly incorporate knowledge graphs represented in varying contexts — from local (e.g., sentence), document-level, to global knowledge, to enable knowledge-rich and interpretable exchange across contexts. In addition, incorporating varying contexts can especially benefit long document understanding tasks that leverage pre-trained LMs, typically bounded by the input sequence length. In light of these challenges, we propose KALM, a language model that jointly leverages knowledge in local, document-level, and global contexts for long document understanding. KALM firstly encodes long documents and knowledge graphs into the three knowledge-aware context representations. KALM then processes each context with context-specific layers. These context-specific layers are followed by a ContextFusion layer that facilitates knowledge exchange to derive an overarching document representation. Extensive experiments demonstrate that KALM achieves state-of-the-art performance on three long document understanding tasks across 6 datasets/settings. Further analyses reveal that the three knowledge-aware contexts are complementary and they all contribute to model performance, while the importance and information exchange patterns of different contexts vary on different tasks and datasets.

2022

pdf bib
PAR: Political Actor Representation Learning with Social Context and Expert Knowledge
Shangbin Feng | Zhaoxuan Tan | Zilong Chen | Ningnan Wang | Peisheng Yu | Qinghua Zheng | Xiaojun Chang | Minnan Luo
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Modeling the ideological perspectives of political actors is an essential task in computational political science with applications in many downstream tasks. Existing approaches are generally limited to textual data and voting records, while they neglect the rich social context and valuable expert knowledge for holistic ideological analysis. In this paper, we propose PAR, a Political Actor Representation learning framework that jointly leverages social context and expert knowledge. Specifically, we retrieve and extract factual statements about legislators to leverage social context information. We then construct a heterogeneous information network to incorporate social context and use relational graph neural networks to learn legislator representations. Finally, we train PAR with three objectives to align representation learning with expert knowledge, model ideological stance consistency, and simulate the echo chamber phenomenon. Extensive experiments demonstrate that PAR is better at augmenting political text understanding and successfully advances the state-of-the-art in political perspective detection and roll call vote prediction. Further analysis proves that PAR learns representations that reflect the political reality and provide new insights into political behavior.