Zhaoyang Wang


2023

pdf bib
Democratizing Reasoning Ability: Tailored Learning from Large Language Model
Zhaoyang Wang | Shaohan Huang | Yuxuan Liu | Jiahai Wang | Minghui Song | Zihan Zhang | Haizhen Huang | Furu Wei | Weiwei Deng | Feng Sun | Qi Zhang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) exhibit impressive emergent abilities in natural language processing, but their democratization is hindered due to huge computation requirements and closed-source nature. Recent research on advancing open-source smaller LMs by distilling knowledge from black-box LLMs has obtained promising results in the instruction-following ability. However, the reasoning ability which is more challenging to foster, is relatively rarely explored. In this paper, we propose a tailored learning approach to distill such reasoning ability to smaller LMs to facilitate the democratization of the exclusive reasoning ability. In contrast to merely employing LLM as a data annotator, we exploit the potential of LLM as a reasoning teacher by building an interactive multi-round learning paradigm. This paradigm enables the student to expose its deficiencies to the black-box teacher who then can provide customized training data in return. Further, to exploit the reasoning potential of the smaller LM, we propose self-reflection learning to motivate the student to learn from self-made mistakes. The learning from self-reflection and LLM are all tailored to the student’s learning status, thanks to the seamless integration with the multi-round learning paradigm. Comprehensive experiments and analysis on mathematical and commonsense reasoning tasks demonstrate the effectiveness of our method. The code will be available at https://github.com/Raibows/Learn-to-Reason.

pdf bib
RMLM: A Flexible Defense Framework for Proactively Mitigating Word-level Adversarial Attacks
Zhaoyang Wang | Zhiyue Liu | Xiaopeng Zheng | Qinliang Su | Jiahai Wang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Adversarial attacks on deep neural networks keep raising security concerns in natural language processing research. Existing defenses focus on improving the robustness of the victim model in the training stage. However, they often neglect to proactively mitigate adversarial attacks during inference. Towards this overlooked aspect, we propose a defense framework that aims to mitigate attacks by confusing attackers and correcting adversarial contexts that are caused by malicious perturbations. Our framework comprises three components: (1) a synonym-based transformation to randomly corrupt adversarial contexts in the word level, (2) a developed BERT defender to correct abnormal contexts in the representation level, and (3) a simple detection method to filter out adversarial examples, any of which can be flexibly combined. Additionally, our framework helps improve the robustness of the victim model during training. Extensive experiments demonstrate the effectiveness of our framework in defending against word-level adversarial attacks.

2022

pdf bib
UECA-Prompt: Universal Prompt for Emotion Cause Analysis
Xiaopeng Zheng | Zhiyue Liu | Zizhen Zhang | Zhaoyang Wang | Jiahai Wang
Proceedings of the 29th International Conference on Computational Linguistics

Emotion cause analysis (ECA) aims to extract emotion clauses and find the corresponding cause of the emotion. Existing methods adopt fine-tuning paradigm to solve certain types of ECA tasks. These task-specific methods have a deficiency of universality. And the relations among multiple objectives in one task are not explicitly modeled. Moreover, the relative position information introduced in most existing methods may make the model suffer from dataset bias. To address the first two problems, this paper proposes a universal prompt tuning method to solve different ECA tasks in the unified framework. As for the third problem, this paper designs a directional constraint module and a sequential learning module to ease the bias. Considering the commonalities among different tasks, this paper proposes a cross-task training method to further explore the capability of the model. The experimental results show that our method achieves competitive performance on the ECA datasets.