Zhe Lin


pdf bib
Visual Information Guided Zero-Shot Paraphrase Generation
Zhe Lin | Xiaojun Wan
Proceedings of the 29th International Conference on Computational Linguistics

Zero-shot paraphrase generation has drawn much attention as the large-scale high-quality paraphrase corpus is limited. Back-translation, also known as the pivot-based method, is typical to this end. Several works leverage different information as ”pivot” such as language, semantic representation and so on. In this paper, we explore using visual information such as image as the ”pivot” of back-translation. Different with the pipeline back-translation method, we propose visual information guided zero-shot paraphrase generation (ViPG) based only on paired image-caption data. It jointly trains an image captioning model and a paraphrasing model and leverage the image captioning model to guide the training of the paraphrasing model. Both automatic evaluation and human evaluation show our model can generate paraphrase with good relevancy, fluency and diversity, and image is a promising kind of pivot for zero-shot paraphrase generation.


pdf bib
Making Better Use of Bilingual Information for Cross-Lingual AMR Parsing
Yitao Cai | Zhe Lin | Xiaojun Wan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Pushing Paraphrase Away from Original Sentence: A Multi-Round Paraphrase Generation Approach
Zhe Lin | Xiaojun Wan
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Towards Document-Level Paraphrase Generation with Sentence Rewriting and Reordering
Zhe Lin | Yitao Cai | Xiaojun Wan
Findings of the Association for Computational Linguistics: EMNLP 2021

Paraphrase generation is an important task in natural language processing. Previous works focus on sentence-level paraphrase generation, while ignoring document-level paraphrase generation, which is a more challenging and valuable task. In this paper, we explore the task of document-level paraphrase generation for the first time and focus on the inter-sentence diversity by considering sentence rewriting and reordering. We propose CoRPG (Coherence Relationship guided Paraphrase Generation), which leverages graph GRU to encode the coherence relationship graph and get the coherence-aware representation for each sentence, which can be used for re-arranging the multiple (possibly modified) input sentences. We create a pseudo document-level paraphrase dataset for training CoRPG. Automatic evaluation results show CoRPG outperforms several strong baseline models on the BERTScore and diversity scores. Human evaluation also shows our model can generate document paraphrase with more diversity and semantic preservation.


pdf bib
On the Helpfulness of Document Context to Sentence Simplification
Renliang Sun | Zhe Lin | Xiaojun Wan
Proceedings of the 28th International Conference on Computational Linguistics

Most of the research on text simplification is limited to sentence level nowadays. In this paper, we are the first to investigate the helpfulness of document context on sentence simplification and apply it to the sequence-to-sequence model. We firstly construct a sentence simplification dataset in which the contexts for the original sentence are provided by Wikipedia corpus. The new dataset contains approximately 116K sentence pairs with context. We then propose a new model that makes full use of the context information. Our model uses neural networks to learn the different effects of the preceding sentences and the following sentences on the current sentence and applies them to the improved transformer model. Evaluated on the newly constructed dataset, our model achieves 36.52 on SARI value, which outperforms the best performing model in the baselines by 2.46 (7.22%), indicating that context indeed helps improve sentence simplification. In the ablation experiment, we show that using either the preceding sentences or the following sentences as context can significantly improve simplification.

pdf bib
Scene Graph Modification Based on Natural Language Commands
Xuanli He | Quan Hung Tran | Gholamreza Haffari | Walter Chang | Zhe Lin | Trung Bui | Franck Dernoncourt | Nhan Dam
Findings of the Association for Computational Linguistics: EMNLP 2020

Structured representations like graphs and parse trees play a crucial role in many Natural Language Processing systems. In recent years, the advancements in multi-turn user interfaces necessitate the need for controlling and updating these structured representations given new sources of information. Although there have been many efforts focusing on improving the performance of the parsers that map text to graphs or parse trees, very few have explored the problem of directly manipulating these representations. In this paper, we explore the novel problem of graph modification, where the systems need to learn how to update an existing scene graph given a new user’s command. Our novel models based on graph-based sparse transformer and cross attention information fusion outperform previous systems adapted from the machine translation and graph generation literature. We further contribute our large graph modification datasets to the research community to encourage future research for this new problem.


pdf bib
Expressing Visual Relationships via Language
Hao Tan | Franck Dernoncourt | Zhe Lin | Trung Bui | Mohit Bansal
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Describing images with text is a fundamental problem in vision-language research. Current studies in this domain mostly focus on single image captioning. However, in various real applications (e.g., image editing, difference interpretation, and retrieval), generating relational captions for two images, can also be very useful. This important problem has not been explored mostly due to lack of datasets and effective models. To push forward the research in this direction, we first introduce a new language-guided image editing dataset that contains a large number of real image pairs with corresponding editing instructions. We then propose a new relational speaker model based on an encoder-decoder architecture with static relational attention and sequential multi-head attention. We also extend the model with dynamic relational attention, which calculates visual alignment while decoding. Our models are evaluated on our newly collected and two public datasets consisting of image pairs annotated with relationship sentences. Experimental results, based on both automatic and human evaluation, demonstrate that our model outperforms all baselines and existing methods on all the datasets.