Zhen Qin


pdf bib
ED2LM: Encoder-Decoder to Language Model for Faster Document Re-ranking Inference
Kai Hui | Honglei Zhuang | Tao Chen | Zhen Qin | Jing Lu | Dara Bahri | Ji Ma | Jai Gupta | Cicero Nogueira dos Santos | Yi Tay | Donald Metzler
Findings of the Association for Computational Linguistics: ACL 2022

State-of-the-art neural models typically encode document-query pairs using cross-attention for re-ranking. To this end, models generally utilize an encoder-only (like BERT) paradigm or an encoder-decoder (like T5) approach. These paradigms, however, are not without flaws, i.e., running the model on all query-document pairs at inference-time incurs a significant computational cost. This paper proposes a new training and inference paradigm for re-ranking. We propose to finetune a pretrained encoder-decoder model using in the form of document to query generation. Subsequently, we show that this encoder-decoder architecture can be decomposed into a decoder-only language model during inference. This results in significant inference time speedups since the decoder-only architecture only needs to learn to interpret static encoder embeddings during inference. Our experiments show that this new paradigm achieves results that are comparable to the more expensive cross-attention ranking approaches while being up to 6.8X faster. We believe this work paves the way for more efficient neural rankers that leverage large pretrained models.


pdf bib
Are Pretrained Convolutions Better than Pretrained Transformers?
Yi Tay | Mostafa Dehghani | Jai Prakash Gupta | Vamsi Aribandi | Dara Bahri | Zhen Qin | Donald Metzler
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In the era of pre-trained language models, Transformers are the de facto choice of model architectures. While recent research has shown promise in entirely convolutional, or CNN, architectures, they have not been explored using the pre-train-fine-tune paradigm. In the context of language models, are convolutional models competitive to Transformers when pre-trained? This paper investigates this research question and presents several interesting findings. Across an extensive set of experiments on 8 datasets/tasks, we find that CNN-based pre-trained models are competitive and outperform their Transformer counterpart in certain scenarios, albeit with caveats. Overall, the findings outlined in this paper suggest that conflating pre-training and architectural advances is misguided and that both advances should be considered independently. We believe our research paves the way for a healthy amount of optimism in alternative architectures.


pdf bib
Diversify Question Generation with Continuous Content Selectors and Question Type Modeling
Zhen Wang | Siwei Rao | Jie Zhang | Zhen Qin | Guangjian Tian | Jun Wang
Findings of the Association for Computational Linguistics: EMNLP 2020

Generating questions based on answers and relevant contexts is a challenging task. Recent work mainly pays attention to the quality of a single generated question. However, question generation is actually a one-to-many problem, as it is possible to raise questions with different focuses on contexts and various means of expression. In this paper, we explore the diversity of question generation and come up with methods from these two aspects. Specifically, we relate contextual focuses with content selectors, which are modeled by a continuous latent variable with the technique of conditional variational auto-encoder (CVAE). In the realization of CVAE, a multimodal prior distribution is adopted to allow for more diverse content selectors. To take into account various means of expression, question types are explicitly modeled and a diversity-promoting algorithm is proposed further. Experimental results on public datasets show that our proposed method can significantly improve the diversity of generated questions, especially from the perspective of using different question types. Overall, our proposed method achieves a better trade-off between generation quality and diversity compared with existing approaches.