Zhen Tan


2021

pdf bib
Relation-aware Bidirectional Path Reasoning for Commonsense Question Answering
Junxing Wang | Xinyi Li | Zhen Tan | Xiang Zhao | Weidong Xiao
Proceedings of the 25th Conference on Computational Natural Language Learning

Commonsense Question Answering is an important natural language processing (NLP) task that aims to predict the correct answer to a question through commonsense reasoning. Previous studies utilize pre-trained models on large-scale corpora such as BERT, or perform reasoning on knowledge graphs. However, these methods do not explicitly model the relations that connect entities, which are informational and can be used to enhance reasoning. To address this issue, we propose a relation-aware reasoning method. Our method uses a relation-aware graph neural network to capture the rich contextual information from both entities and relations. Compared with methods that use fixed relation embeddings from pre-trained models, our model dynamically updates relations with contextual information from a multi-source subgraph, built from multiple external knowledge sources. The enhanced representations of relations are then fed to a bidirectional reasoning module. A bidirectional attention mechanism is applied between the question sequence and the paths that connect entities, which provides us with transparent interpretability. Experimental results on the CommonsenseQA dataset illustrate that our method results in significant improvements over the baselines while also providing clear reasoning paths.

2020

pdf bib
Joint Event Extraction with Hierarchical Policy Network
Peixin Huang | Xiang Zhao | Ryuichi Takanobu | Zhen Tan | Weidong Xiao
Proceedings of the 28th International Conference on Computational Linguistics

Most existing work on event extraction (EE) either follows a pipelined manner or uses a joint structure but is pipelined in essence. As a result, these efforts fail to utilize information interactions among event triggers, event arguments, and argument roles, which causes information redundancy. In view of this, we propose to exploit the role information of the arguments in an event and devise a Hierarchical Policy Network (HPNet) to perform joint EE. The whole EE process is fulfilled through a two-level hierarchical structure consisting of two policy networks for event detection and argument detection. The deep information interactions among the subtasks are realized, and it is more natural to deal with multiple events issue. Extensive experiments on ACE2005 and TAC2015 demonstrate the superiority of HPNet, leading to state-of-the-art performance and is more powerful for sentences with multiple events.

pdf bib
CLEEK: A Chinese Long-text Corpus for Entity Linking
Weixin Zeng | Xiang Zhao | Jiuyang Tang | Zhen Tan | Xuqian Huang
Proceedings of the Twelfth Language Resources and Evaluation Conference

Entity linking, as one of the fundamental tasks in natural language processing, is crucial to knowledge fusion, knowledge base construction and update. Nevertheless, in contrast to the research on entity linking for English text, which undergoes continuous development, the Chinese counterpart is still in its infancy. One prominent issue lies in publicly available annotated datasets and evaluation benchmarks, which are lacking and deficient. In specific, existing Chinese corpora for entity linking were mainly constructed from noisy short texts, such as microblogs and news headings, where long texts were largely overlooked, which yet constitute a wider spectrum of real-life scenarios. To address the issue, in this work, we build CLEEK, a Chinese corpus of multi-domain long text for entity linking, in order to encourage advancement of entity linking in languages besides English. The corpus consists of 100 documents from diverse domains, and is publicly accessible. Moreover, we devise a measure to evaluate the difficulty of documents with respect to entity linking, which is then used to characterize the corpus. Additionally, the results of two baselines and seven state-of-the-art solutions on CLEEK are reported and compared. The empirical results validate the usefulness of CLEEK and the effectiveness of proposed difficulty measure.