Zhen Thai
2024
OlympiadBench: A Challenging Benchmark for Promoting AGI with Olympiad-Level Bilingual Multimodal Scientific Problems
Chaoqun He
|
Renjie Luo
|
Yuzhuo Bai
|
Shengding Hu
|
Zhen Thai
|
Junhao Shen
|
Jinyi Hu
|
Xu Han
|
Yujie Huang
|
Yuxiang Zhang
|
Jie Liu
|
Lei Qi
|
Zhiyuan Liu
|
Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advancements have seen Large Language Models (LLMs) and Large Multimodal Models (LMMs) surpassing general human capabilities in various tasks, approaching the proficiency level of human experts across multiple domains. With traditional benchmarks becoming less challenging for these models, new rigorous challenges are essential to gauge their advanced abilities. In this work, we present OlympiadBench, an Olympiad-level bilingual multimodal scientific benchmark, featuring 8,476 problems from Olympiad-level mathematics and physics competitions, including the Chinese college entrance exam. Each problem is detailed with expert-level annotations for step-by-step reasoning. Evaluating top-tier models on OlympiadBench, we implement a comprehensive assessment methodology to accurately evaluate model responses. Notably, the best-performing model, GPT-4V, attains an average score of 17.97% on OlympiadBench, with a mere 10.74% in physics, highlighting the benchmark rigor and the intricacy of physical reasoning. Our analysis orienting GPT-4V points out prevalent issues with hallucinations, knowledge omissions, and logical fallacies. We hope that our challenging benchmark can serve as a valuable resource for helping future AGI research endeavors. The data and evaluation code are available at https://github.com/OpenBMB/OlympiadBench
∞Bench: Extending Long Context Evaluation Beyond 100K Tokens
Xinrong Zhang
|
Yingfa Chen
|
Shengding Hu
|
Zihang Xu
|
Junhao Chen
|
Moo Hao
|
Xu Han
|
Zhen Thai
|
Shuo Wang
|
Zhiyuan Liu
|
Maosong Sun
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Processing and reasoning over long contexts is crucial for many practical applications of Large Language Models (LLMs), such as document comprehension and agent construction. Despite recent strides in making LLMs process contexts with more than 100K tokens, there is currently a lack of a standardized benchmark to evaluate this long-context capability. Existing public benchmarks typically focus on contexts around 10K tokens, limiting the assessment and comparison of LLMs in processing longer contexts. In this paper, we propose , the first LLM benchmark featuring an average data length surpassing 100K tokens. comprises synthetic and realistic tasks spanning diverse domains in English and Chinese. The tasks in are designed to require an understanding of long dependencies in contexts and make simply retrieving a limited number of passages from contexts not sufficient for these tasks. Based on , we evaluate several state-of-the-art LLMs tailored for processing long contexts. The experimental results indicate that existing long-context LLMs still require significant advancements to process 100K+ contexts effectively. Furthermore, we present three intriguing analyses regarding the behavior of LLMs processing long context. Our code and data is released.
Search
Fix data
Co-authors
- Xu Han 2
- Shengding Hu 2
- Zhiyuan Liu 2
- Maosong Sun (孙茂松) 2
- Yuzhuo Bai 1
- show all...
Venues
- acl2