Zhen Wan


pdf bib
Relation Extraction with Weighted Contrastive Pre-training on Distant Supervision
Zhen Wan | Fei Cheng | Qianying Liu | Zhuoyuan Mao | Haiyue Song | Sadao Kurohashi
Findings of the Association for Computational Linguistics: EACL 2023

Contrastive pre-training on distant supervision has shown remarkable effectiveness in improving supervised relation extraction tasks. However, the existing methods ignore the intrinsic noise of distant supervision during the pre-training stage. In this paper, we propose a weighted contrastive learning method by leveraging the supervised data to estimate the reliability of pre-training instances and explicitly reduce the effect of noise. Experimental results on three supervised datasets demonstrate the advantages of our proposed weighted contrastive learning approach compared to two state-of-the-art non-weighted baselines. Our code and models are available at: https://github.com/YukinoWan/WCL.

pdf bib
GPT-RE: In-context Learning for Relation Extraction using Large Language Models
Zhen Wan | Fei Cheng | Zhuoyuan Mao | Qianying Liu | Haiyue Song | Jiwei Li | Sadao Kurohashi
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

In spite of the potential for ground-breaking achievements offered by large language models (LLMs) (e.g., GPT-3) via in-context learning (ICL), they still lag significantly behind fully-supervised baselines (e.g., fine-tuned BERT) in relation extraction (RE). This is due to the two major shortcomings of ICL for RE: (1) low relevance regarding entity and relation in existing sentence-level demonstration retrieval approaches for ICL; and (2) the lack of explaining input-label mappings of demonstrations leading to poor ICL effectiveness. In this paper, we propose GPT-RE to successfully address the aforementioned issues by (1) incorporating task-aware representations in demonstration retrieval; and (2) enriching the demonstrations with gold label-induced reasoning logic. We evaluate GPT-RE on four widely-used RE datasets, and observe that GPT-RE achieves improvements over not only existing GPT-3 baselines, but also fully-supervised baselines as in Figure 1. Specifically, GPT-RE achieves SOTA performances on the Semeval and SciERC datasets, and competitive performances on the TACRED and ACE05 datasets. Additionally, a critical issue of LLMs revealed by previous work, the strong inclination to wrongly classify NULL examples into other pre-defined labels, is substantially alleviated by our method. We show an empirical analysis.


pdf bib
Seeking Diverse Reasoning Logic: Controlled Equation Expression Generation for Solving Math Word Problems
Yibin Shen | Qianying Liu | Zhuoyuan Mao | Zhen Wan | Fei Cheng | Sadao Kurohashi
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

To solve Math Word Problems, human students leverage diverse reasoning logic that reaches different possible equation solutions. However, the mainstream sequence-to-sequence approach of automatic solvers aims to decode a fixed solution equation supervised by human annotation. In this paper, we propose a controlled equation generation solver by leveraging a set of control codes to guide the model to consider certain reasoning logic and decode the corresponding equations expressions transformed from the human reference. The empirical results suggest that our method universally improves the performance on single-unknown (Math23K) and multiple-unknown (DRAW1K, HMWP) benchmarks, with substantial improvements up to 13.2% accuracy on the challenging multiple-unknown datasets.

pdf bib
Rescue Implicit and Long-tail Cases: Nearest Neighbor Relation Extraction
Zhen Wan | Qianying Liu | Zhuoyuan Mao | Fei Cheng | Sadao Kurohashi | Jiwei Li
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Relation extraction (RE) has achieved remarkable progress with the help of pre-trained language models. However, existing RE models are usually incapable of handling two situations: implicit expressions and long-tail relation types, caused by language complexity and data sparsity. In this paper, we introduce a simple enhancement of RE using k nearest neighbors (kNN-RE). kNN-RE allows the model to consult training relations at test time through a nearest-neighbor search and provides a simple yet effective means to tackle the two issues above. Additionally, we observe that kNN-RE serves as an effective way to leverage distant supervision (DS) data for RE. Experimental results show that the proposed kNN-RE achieves state-of-the-art performances on a variety of supervised RE datasets, i.e., ACE05, SciERC, and Wiki80, along with outperforming the best model to date on the i2b2 and Wiki80 datasets in the setting of allowing using DS. Our code and models are available at: https://github.com/YukinoWan/kNN-RE.

pdf bib
When do Contrastive Word Alignments Improve Many-to-many Neural Machine Translation?
Zhuoyuan Mao | Chenhui Chu | Raj Dabre | Haiyue Song | Zhen Wan | Sadao Kurohashi
Findings of the Association for Computational Linguistics: NAACL 2022

Word alignment has proven to benefit many-to-many neural machine translation (NMT). However, high-quality ground-truth bilingual dictionaries were used for pre-editing in previous methods, which are unavailable for most language pairs. Meanwhile, the contrastive objective can implicitly utilize automatically learned word alignment, which has not been explored in many-to-many NMT. This work proposes a word-level contrastive objective to leverage word alignments for many-to-many NMT. Empirical results show that this leads to 0.8 BLEU gains for several language pairs. Analyses reveal that in many-to-many NMT, the encoder’s sentence retrieval performance highly correlates with the translation quality, which explains when the proposed method impacts translation. This motivates future exploration for many-to-many NMT to improve the encoder’s sentence retrieval performance.