2024
pdf
bib
abs
Unveiling the Lexical Sensitivity of LLMs: Combinatorial Optimization for Prompt Enhancement
Pengwei Zhan
|
Zhen Xu
|
Qian Tan
|
Jie Song
|
Ru Xie
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language models (LLMs) demonstrate exceptional instruct-following ability to complete various downstream tasks. Although this impressive ability makes LLMs flexible task solvers, their performance in solving tasks also heavily relies on instructions. In this paper, we reveal that LLMs are over-sensitive to lexical variations in task instructions, even when the variations are imperceptible to humans. By providing models with neighborhood instructions, which are closely situated in the latent representation space and differ by only one semantically similar word, the performance on downstream tasks can be vastly different. Following this property, we propose a black-box Combinatorial Optimization framework for Prompt Lexical Enhancement (COPLE). COPLE performs iterative lexical optimization according to the feedback from a batch of proxy tasks, using a search strategy related to word influence. Experiments show that even widely-used human-crafted prompts for current benchmarks suffer from the lexical sensitivity of models, and COPLE recovers the declined model ability in both instruct-following and solving downstream tasks.
2021
pdf
bib
Multimodal Fusion with Co-Attention Networks for Fake News Detection
Yang Wu
|
Pengwei Zhan
|
Yunjian Zhang
|
Liming Wang
|
Zhen Xu
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
2018
pdf
bib
abs
A Prospective-Performance Network to Alleviate Myopia in Beam Search for Response Generation
Zongsheng Wang
|
Yunzhi Bai
|
Bowen Wu
|
Zhen Xu
|
Zhuoran Wang
|
Baoxun Wang
Proceedings of the 27th International Conference on Computational Linguistics
Generative dialog models usually adopt beam search as the inference method to generate responses. However, small-width beam search only focuses on the limited current optima. This deficiency named as myopic bias ultimately suppresses the diversity and probability of generated responses. Although increasing the beam width mitigates the myopic bias, it also proportionally slows down the inference efficiency. To alleviate the myopic bias in small-width beam search, this paper proposes a Prospective-Performance Network (PPN) to predict the future reward of the given partially-generated response, and the future reward is defined by the expectation of the partial response appearing in the top-ranked responses given by a larger-width beam search. Enhanced by PPN, the decoder can promote the results with great potential during the beam search phase. The experimental results on both Chinese and English corpora show that our method is promising to increase the quality and diversity of generated responses, with inference efficiency well maintained.
pdf
bib
abs
LSDSCC: a Large Scale Domain-Specific Conversational Corpus for Response Generation with Diversity Oriented Evaluation Metrics
Zhen Xu
|
Nan Jiang
|
Bingquan Liu
|
Wenge Rong
|
Bowen Wu
|
Baoxun Wang
|
Zhuoran Wang
|
Xiaolong Wang
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)
It has been proven that automatic conversational agents can be built up using the Endto-End Neural Response Generation (NRG) framework, and such a data-driven methodology requires a large number of dialog pairs for model training and reasonable evaluation metrics for testing. This paper proposes a Large Scale Domain-Specific Conversational Corpus (LSDSCC) composed of high-quality queryresponse pairs extracted from the domainspecific online forum, with thorough preprocessing and cleansing procedures. Also, a testing set, including multiple diverse responses annotated for each query, is constructed, and on this basis, the metrics for measuring the diversity of generated results are further presented. We evaluate the performances of neural dialog models with the widely applied diversity boosting strategies on the proposed dataset. The experimental results have shown that our proposed corpus can be taken as a new benchmark dataset for the NRG task, and the presented metrics are promising to guide the optimization of NRG models by quantifying the diversity of the generated responses reasonably.
2017
pdf
bib
abs
Neural Response Generation via GAN with an Approximate Embedding Layer
Zhen Xu
|
Bingquan Liu
|
Baoxun Wang
|
Chengjie Sun
|
Xiaolong Wang
|
Zhuoran Wang
|
Chao Qi
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing
This paper presents a Generative Adversarial Network (GAN) to model single-turn short-text conversations, which trains a sequence-to-sequence (Seq2Seq) network for response generation simultaneously with a discriminative classifier that measures the differences between human-produced responses and machine-generated ones. In addition, the proposed method introduces an approximate embedding layer to solve the non-differentiable problem caused by the sampling-based output decoding procedure in the Seq2Seq generative model. The GAN setup provides an effective way to avoid noninformative responses (a.k.a “safe responses”), which are frequently observed in traditional neural response generators. The experimental results show that the proposed approach significantly outperforms existing neural response generation models in diversity metrics, with slight increases in relevance scores as well, when evaluated on both a Mandarin corpus and an English corpus.
pdf
bib
abs
Group Linguistic Bias Aware Neural Response Generation
Jianan Wang
|
Xin Wang
|
Fang Li
|
Zhen Xu
|
Zhuoran Wang
|
Baoxun Wang
Proceedings of the 9th SIGHAN Workshop on Chinese Language Processing
For practical chatbots, one of the essential factor for improving user experience is the capability of customizing the talking style of the agents, that is, to make chatbots provide responses meeting users’ preference on language styles, topics, etc. To address this issue, this paper proposes to incorporate linguistic biases, which implicitly involved in the conversation corpora generated by human groups in the Social Network Services (SNS), into the encoder-decoder based response generator. By attaching a specially designed neural component to dynamically control the impact of linguistic biases in response generation, a Group Linguistic Bias Aware Neural Response Generation (GLBA-NRG) model is eventually presented. The experimental results on the dataset from the Chinese SNS show that the proposed architecture outperforms the current response generating models by producing both meaningful and vivid responses with customized styles.