Zhenan He
2024
Rationales for Answers to Simple Math Word Problems Confuse Large Language Models
Yidan Zhang
|
Mingfeng Xue
|
Dayiheng Liu
|
Zhenan He
Findings of the Association for Computational Linguistics: ACL 2024
Recently, large language models (LLMs) have demonstrated breakthrough mathematical problem-solving capabilities in grade school math word problems (MWP). For example, on the MWP benchmark GSM8K, the accuracy of GPT-3.5-Turbo and MetaMath-70B reaches 80.80% and 82.30%, respectively. One question arises, does it mean that LLMs have truly mastered related mathematical problem-solving abilities? In this paper, by presenting two types of benchmarks, where MCGSM8K aims at selecting one correct solution from four solutions, while GSM8K-Judgement judges whether a solution to a given question is true or false, we demonstrate that the ability of most LLMs to evaluate the mathematical reasoning process of MWP is far from sufficient. To compensate for this issue, we propose hybrid supervised fine-tuning data from the training data of GSM8K, MCGSM8K, and GSM8K-Judgement, which significantly improves performance on the proposed reasoning process evaluation benchmarks. For example, fine-tuning improves the performance of LLaMA-2-13B from 33.51% to 70.89% on MCGSM8K. In conclusion, we experimentally demonstrate that most LLMs have limited ability to evaluate the mathematical reasoning process of MWP, which can be enhanced through fine-tuning.
Large Language Models Can Not Perform Well in Understanding and Manipulating Natural Language at Both Character and Word Levels?
Yidan Zhang
|
Zhenan He
Findings of the Association for Computational Linguistics: EMNLP 2024
Despite their promising performance across various tasks, recent studies reveal that Large language models (LLMs) still exhibit significant deficiencies in handling several word-level and character-level tasks, e.g., word unscrambling and sentence editing, indicating urgent needs for substantial improvements in basic language understanding and manipulation. To address these challenges, it is crucial to develop large-scale benchmarks that can comprehensively assess the performance of LLMs in basic language tasks. In this paper, we introduce a bilingual benchmark, CWUM, to investigate the capabilities and limitations of LLMs in understanding and manipulating natural language at both character and word levels. CWUM consists of 15 simple text editing tasks, e.g., letter counting, word reversing, Chinese character inserting, etc. We conduct extensive experiments on eight advanced LLMs, including base models and instruction-tuned (chat) variants. The experimental results highlight significant failures of existing LLMs on CWUM tasks that humans can solve perfectly with 100% accuracy. On English tasks of CWUM, the average accuracy of GPT-4, LLaMA-3-70B, and Qwen-72B is 66.64%, 39.32%, and 33.16%, respectively, which lags far behind human performance. Instruction-tuning the base model does not lead to a distinct performance improvement, as the average accuracy of LLaMA-3-70B-Instruct on English tasks is only 1.44% higher than that of the base LLaMA-3-70B. Ultimately, we show that supervised fine-tuning (SFT) can enhance model performance on CWUM without compromising its ability to generalize across general tasks.