Zheng Tang


pdf bib
Interpretability Rules: Jointly Bootstrapping a Neural Relation Extractorwith an Explanation Decoder
Zheng Tang | Mihai Surdeanu
Proceedings of the First Workshop on Trustworthy Natural Language Processing

We introduce a method that transforms a rule-based relation extraction (RE) classifier into a neural one such that both interpretability and performance are achieved. Our approach jointly trains a RE classifier with a decoder that generates explanations for these extractions, using as sole supervision a set of rules that match these relations. Our evaluation on the TACRED dataset shows that our neural RE classifier outperforms the rule-based one we started from by 9 F1 points; our decoder generates explanations with a high BLEU score of over 90%; and, the joint learning improves the performance of both the classifier and decoder.


pdf bib
Exploring Interpretability in Event Extraction: Multitask Learning of a Neural Event Classifier and an Explanation Decoder
Zheng Tang | Gus Hahn-Powell | Mihai Surdeanu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop

We propose an interpretable approach for event extraction that mitigates the tension between generalization and interpretability by jointly training for the two goals. Our approach uses an encoder-decoder architecture, which jointly trains a classifier for event extraction, and a rule decoder that generates syntactico-semantic rules that explain the decisions of the event classifier. We evaluate the proposed approach on three biomedical events and show that the decoder generates interpretable rules that serve as accurate explanations for the event classifier’s decisions, and, importantly, that the joint training generally improves the performance of the event classifier. Lastly, we show that our approach can be used for semi-supervised learning, and that its performance improves when trained on automatically-labeled data generated by a rule-based system.


pdf bib
Eidos, INDRA, & Delphi: From Free Text to Executable Causal Models
Rebecca Sharp | Adarsh Pyarelal | Benjamin Gyori | Keith Alcock | Egoitz Laparra | Marco A. Valenzuela-Escárcega | Ajay Nagesh | Vikas Yadav | John Bachman | Zheng Tang | Heather Lent | Fan Luo | Mithun Paul | Steven Bethard | Kobus Barnard | Clayton Morrison | Mihai Surdeanu
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations)

Building causal models of complicated phenomena such as food insecurity is currently a slow and labor-intensive manual process. In this paper, we introduce an approach that builds executable probabilistic models from raw, free text. The proposed approach is implemented through three systems: Eidos, INDRA, and Delphi. Eidos is an open-domain machine reading system designed to extract causal relations from natural language. It is rule-based, allowing for rapid domain transfer, customizability, and interpretability. INDRA aggregates multiple sources of causal information and performs assembly to create a coherent knowledge base and assess its reliability. This assembled knowledge serves as the starting point for modeling. Delphi is a modeling framework that assembles quantified causal fragments and their contexts into executable probabilistic models that respect the semantics of the original text, and can be used to support decision making.