Zheng Xin Yong


pdf bib
Frame Shift Prediction
Zheng Xin Yong | Patrick D. Watson | Tiago Timponi Torrent | Oliver Czulo | Collin Baker
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Frame shift is a cross-linguistic phenomenon in translation which results in corresponding pairs of linguistic material evoking different frames. The ability to predict frame shifts would enable (semi-)automatic creation of multilingual frame annotations and thus speeding up FrameNet creation through annotation projection. Here, we first characterize how frame shifts result from other linguistic divergences such as translational divergences and construal differences. Our analysis also shows that many pairs of frames in frame shifts are multi-hop away from each other in Berkeley FrameNet’s net-like configuration. Then, we propose the Frame Shift Prediction task and demonstrate that our graph attention networks, combined with auxiliary training, can learn cross-linguistic frame-to-frame correspondence and predict frame shifts.

pdf bib
PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts
Stephen Bach | Victor Sanh | Zheng Xin Yong | Albert Webson | Colin Raffel | Nihal V. Nayak | Abheesht Sharma | Taewoon Kim | M Saiful Bari | Thibault Fevry | Zaid Alyafeai | Manan Dey | Andrea Santilli | Zhiqing Sun | Srulik Ben-david | Canwen Xu | Gunjan Chhablani | Han Wang | Jason Fries | Maged Al-shaibani | Shanya Sharma | Urmish Thakker | Khalid Almubarak | Xiangru Tang | Dragomir Radev | Mike Tian-jian Jiang | Alexander Rush
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

PromptSource is a system for creating, sharing, and using natural language prompts. Prompts are functions that map an example from a dataset to a natural language input and target output. Using prompts to train and query language models is an emerging area in NLP that requires new tools that let users develop and refine these prompts collaboratively. PromptSource addresses the emergent challenges in this new setting with (1) a templating language for defining data-linked prompts, (2) an interface that lets users quickly iterate on prompt development by observing outputs of their prompts on many examples, and (3) a community-driven set of guidelines for contributing new prompts to a common pool. Over 2,000 prompts for roughly 170 datasets are already available in PromptSource. PromptSource is available at https://github.com/bigscience-workshop/promptsource.

pdf bib
What Language Model to Train if You Have One Million GPU Hours?
Teven Le Scao | Thomas Wang | Daniel Hesslow | Stas Bekman | M Saiful Bari | Stella Biderman | Hady Elsahar | Niklas Muennighoff | Jason Phang | Ofir Press | Colin Raffel | Victor Sanh | Sheng Shen | Lintang Sutawika | Jaesung Tae | Zheng Xin Yong | Julien Launay | Iz Beltagy
Findings of the Association for Computational Linguistics: EMNLP 2022

The crystallization of modeling methods around the Transformer architecture has been a boon for practitioners. Simple, well-motivated architectural variations can transfer across tasks and scale, increasing the impact of modeling research. However, with the emergence of state-of-the-art 100B+ parameters models, large language models are increasingly expensive to accurately design and train. Notably, it can be difficult to evaluate how modeling decisions may impact emergent capabilities, given that these capabilities arise mainly from sheer scale alone.In the process of building BLOOM–the Big Science Large Open-science Open-access Multilingual language model–our goal is to identify an architecture and training setup that makes the best use of our 1,000,000 A100-GPU-hours budget.Specifically, we perform an ablation study at the billion-parameter scale comparing different modeling practices and their impact on zero-shot generalization.In addition, we study the impact of various popular pre-training corpora on zero-shot generalization. We also study the performance of a multilingual model and how it compares to the English-only one. Finally, we consider the scaling behaviour of Transformers to choose the target model size, shape, and training setup. All our models and code are open-sourced at https://huggingface.co/bigscience.


pdf bib
Semi-supervised Deep Embedded Clustering with Anomaly Detection for Semantic Frame Induction
Zheng Xin Yong | Tiago Timponi Torrent
Proceedings of the Twelfth Language Resources and Evaluation Conference

Although FrameNet is recognized as one of the most fine-grained lexical databases, its coverage of lexical units is still limited. To tackle this issue, we propose a two-step frame induction process: for a set of lexical units not yet present in Berkeley FrameNet data release 1.7, first remove those that cannot fit into any existing semantic frame in FrameNet; then, assign the remaining lexical units to their correct frames. We also present the Semi-supervised Deep Embedded Clustering with Anomaly Detection (SDEC-AD) model—an algorithm that maps high-dimensional contextualized vector representations of lexical units to a low-dimensional latent space for better frame prediction and uses reconstruction error to identify lexical units that cannot evoke frames in FrameNet. SDEC-AD outperforms the state-of-the-art methods in both steps of the frame induction process. Empirical results also show that definitions provide contextual information for representing and characterizing the frame membership of lexical units.