Zheng Xin Yong


pdf bib
PromptSource: An Integrated Development Environment and Repository for Natural Language Prompts
Stephen Bach | Victor Sanh | Zheng Xin Yong | Albert Webson | Colin Raffel | Nihal V. Nayak | Abheesht Sharma | Taewoon Kim | M Saiful Bari | Thibault Fevry | Zaid Alyafeai | Manan Dey | Andrea Santilli | Zhiqing Sun | Srulik Ben-david | Canwen Xu | Gunjan Chhablani | Han Wang | Jason Fries | Maged Al-shaibani | Shanya Sharma | Urmish Thakker | Khalid Almubarak | Xiangru Tang | Dragomir Radev | Mike Tian-jian Jiang | Alexander Rush
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics: System Demonstrations

PromptSource is a system for creating, sharing, and using natural language prompts. Prompts are functions that map an example from a dataset to a natural language input and target output. Using prompts to train and query language models is an emerging area in NLP that requires new tools that let users develop and refine these prompts collaboratively. PromptSource addresses the emergent challenges in this new setting with (1) a templating language for defining data-linked prompts, (2) an interface that lets users quickly iterate on prompt development by observing outputs of their prompts on many examples, and (3) a community-driven set of guidelines for contributing new prompts to a common pool. Over 2,000 prompts for roughly 170 datasets are already available in PromptSource. PromptSource is available at https://github.com/bigscience-workshop/promptsource.


pdf bib
Semi-supervised Deep Embedded Clustering with Anomaly Detection for Semantic Frame Induction
Zheng Xin Yong | Tiago Timponi Torrent
Proceedings of the 12th Language Resources and Evaluation Conference

Although FrameNet is recognized as one of the most fine-grained lexical databases, its coverage of lexical units is still limited. To tackle this issue, we propose a two-step frame induction process: for a set of lexical units not yet present in Berkeley FrameNet data release 1.7, first remove those that cannot fit into any existing semantic frame in FrameNet; then, assign the remaining lexical units to their correct frames. We also present the Semi-supervised Deep Embedded Clustering with Anomaly Detection (SDEC-AD) model—an algorithm that maps high-dimensional contextualized vector representations of lexical units to a low-dimensional latent space for better frame prediction and uses reconstruction error to identify lexical units that cannot evoke frames in FrameNet. SDEC-AD outperforms the state-of-the-art methods in both steps of the frame induction process. Empirical results also show that definitions provide contextual information for representing and characterizing the frame membership of lexical units.