Zheng Zhao


2021

pdf bib
Revisiting Shallow Discourse Parsing in the PDTB-3: Handling Intra-sentential Implicits
Zheng Zhao | Bonnie Webber
Proceedings of the 2nd Workshop on Computational Approaches to Discourse

In the PDTB-3, several thousand implicit discourse relations were newly annotated within individual sentences, adding to the over 15,000 implicit relations annotated across adjacent sentences in the PDTB-2. Given that the position of the arguments to these intra-sentential implicits is no longer as well-defined as with inter-sentential implicits, a discourse parser must identify both their location and their sense. That is the focus of the current work. The paper provides a comprehensive analysis of our results, showcasing model performance under different scenarios, pointing out limitations and noting future directions.

2020

pdf bib
Extending Implicit Discourse Relation Recognition to the PDTB-3
Li Liang | Zheng Zhao | Bonnie Webber
Proceedings of the First Workshop on Computational Approaches to Discourse

The PDTB-3 contains many more Implicit discourse relations than the previous PDTB-2. This is in part because implicit relations have now been annotated within sentences as well as between them. In addition, some now co-occur with explicit discourse relations, instead of standing on their own. Here we show that while this can complicate the problem of identifying the location of implicit discourse relations, it can in turn simplify the problem of identifying their senses. We present data to support this claim, as well as methods that can serve as a non-trivial baseline for future state-of-the-art recognizers for implicit discourse relations.

pdf bib
Reducing Quantity Hallucinations in Abstractive Summarization
Zheng Zhao | Shay B. Cohen | Bonnie Webber
Findings of the Association for Computational Linguistics: EMNLP 2020

It is well-known that abstractive summaries are subject to hallucination—including material that is not supported by the original text. While summaries can be made hallucination-free by limiting them to general phrases, such summaries would fail to be very informative. Alternatively, one can try to avoid hallucinations by verifying that any specific entities in the summary appear in the original text in a similar context. This is the approach taken by our system, Herman. The system learns to recognize and verify quantity entities (dates, numbers, sums of money, etc.) in a beam-worth of abstractive summaries produced by state-of-the-art models, in order to up-rank those summaries whose quantity terms are supported by the original text. Experimental results demonstrate that the ROUGE scores of such up-ranked summaries have a higher Precision than summaries that have not been up-ranked, without a comparable loss in Recall, resulting in higher F1. Preliminary human evaluation of up-ranked vs. original summaries shows people’s preference for the former.