Zhengran Zeng


2024

pdf bib
FreeEval: A Modular Framework for Trustworthy and Efficient Evaluation of Large Language Models
Zhuohao Yu | Chang Gao | Wenjin Yao | Yidong Wang | Zhengran Zeng | Wei Ye | Jindong Wang | Yue Zhang | Shikun Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

The rapid growth of evaluation methodologies and datasets for large language models (LLMs) has created a pressing need for their unified integration. Meanwhile, concerns about data contamination and bias compromise the trustworthiness of evaluation findings, while the efficiency of evaluation processes remains a bottleneck due to the significant computational costs associated with LLM inference.In response to these challenges, we introduce FreeEval, a modular framework not only for conducting trustworthy and efficient automatic evaluations of LLMs but also serving as a platform to develop and validate new evaluation methodologies. FreeEval addresses key challenges through: (1) unified abstractions that simplify the integration of diverse evaluation methods, including dynamic evaluations requiring complex LLM interactions; (2) built-in meta-evaluation techniques such as data contamination detection and human evaluation to enhance result fairness; (3) a high-performance infrastructure with distributed computation and caching strategies for efficient large-scale evaluations; and (4) an interactive Visualizer for result analysis and interpretation to support innovation of evaluation techniques. We open-source all our code at https://github.com/WisdomShell/FreeEval and our demostration video, live demo, installation guides are available at: https://freeeval.zhuohao.me/.

pdf bib
RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
Xuanwang Zhang | Yun-Ze Song | Yidong Wang | Shuyun Tang | Xinfeng Li | Zhengran Zeng | Zhen Wu | Wei Ye | Wenyuan Xu | Yue Zhang | Xinyu Dai | Shikun Zhang | Qingsong Wen
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Large Language Models (LLMs) demonstrate human-level capabilities in dialogue, reasoning, and knowledge retention. However, even the most advanced LLMs face challenges such as hallucinations and real-time updating of their knowledge. Current research addresses this bottleneck by equipping LLMs with external knowledge, a technique known as Retrieval Augmented Generation (RAG). However, two key issues constrained the development of RAG. First, there is a growing lack of comprehensive and fair comparisons between novel RAG algorithms. Second, open-source tools such as LlamaIndex and LangChain employ high-level abstractions, which results in a lack of transparency and limits the ability to develop novel algorithms and evaluation metrics. To close this gap, we introduce RAGLAB, a modular and research-oriented open-source library. RAGLAB reproduces 6 existing algorithms and provides a comprehensive ecosystem for investigating RAG algorithms. Leveraging RAGLAB, we conduct a fair comparison of 6 RAG algorithms across 10 benchmarks. With RAGLAB, researchers can efficiently compare the performance of various algorithms and develop novel algorithms.