Zhengyi Guan
2023
Janko at SemEval-2023 Task 2: Bidirectional LSTM Model Based on Pre-training for Chinese Named Entity Recognition
Jiankuo Li
|
Zhengyi Guan
|
Haiyan Ding
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)
This paper describes the method we submitted as the Janko team in the SemEval-2023 Task 2,Multilingual Complex Named Entity Recognition (MultiCoNER 2). We only participated in the Chinese track. In this paper, we implement the BERT-BiLSTM-RDrop model. We use the fine-tuned BERT models, take the output of BERT as the input of the BiLSTM network, and finally use R-Drop technology to optimize the loss function. Our submission achieved a macro-averaged F1 score of 0.579 on the testset.
2021
Tsia at SemEval-2021 Task 7: Detecting and Rating Humor and Offense
Zhengyi Guan
|
Xiaobing ZXB Zhou
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)
This paper describes our contribution to SemEval-2021 Task 7: Detecting and Rating Humor and Of-fense.This task contains two sub-tasks, sub-task 1and sub-task 2. Among them, sub-task 1 containsthree sub-tasks, sub-task 1a ,sub-task 1b and sub-task 1c.Sub-task 1a is to predict if the text would beconsidered humorous. Sub-task 1c is described asfollows: if the text is classed as humorous, predictif the humor rating would be considered controver-sial, i.e. the variance of the rating between annota-tors is higher than the median.we combined threepre-trained model with CNN to complete these twoclassification sub-tasks. Sub-task 1b is to judge thedegree of humor. Sub-task 2 aims to predict how of-fensive a text would be with values between 0 and5.We use the idea of regression to deal with thesetwo sub-tasks. We analyze the performance of ourmethod and demonstrate the contribution of eachcomponent of our architecture. We have achievedgood results under the combination of multiple pre-training models and optimization methods.
Search