Zhenhao Li


pdf bib
Findings of the WMT 2021 Shared Task on Quality Estimation
Lucia Specia | Frédéric Blain | Marina Fomicheva | Chrysoula Zerva | Zhenhao Li | Vishrav Chaudhary | André F. T. Martins
Proceedings of the Sixth Conference on Machine Translation

We report the results of the WMT 2021 shared task on Quality Estimation, where the challenge is to predict the quality of the output of neural machine translation systems at the word and sentence levels. This edition focused on two main novel additions: (i) prediction for unseen languages, i.e. zero-shot settings, and (ii) prediction of sentences with catastrophic errors. In addition, new data was released for a number of languages, especially post-edited data. Participating teams from 19 institutions submitted altogether 1263 systems to different task variants and language pairs.

pdf bib
ICL’s Submission to the WMT21 Critical Error Detection Shared Task
Genze Jiang | Zhenhao Li | Lucia Specia
Proceedings of the Sixth Conference on Machine Translation

This paper presents Imperial College London’s submissions to the WMT21 Quality Estimation (QE) Shared Task 3: Critical Error Detection. Our approach builds on cross-lingual pre-trained representations in a sequence classification model. We further improve the base classifier by (i) adding a weighted sampler to deal with unbalanced data and (ii) introducing feature engineering, where features related to toxicity, named-entities and sentiment, which are potentially indicative of critical errors, are extracted using existing tools and integrated to the model in different ways. We train models with one type of feature at a time and ensemble those models that improve over the base classifier on the development (dev) set. Our official submissions achieve very competitive results, ranking second for three out of four language pairs.

pdf bib
Visual Cues and Error Correction for Translation Robustness
Zhenhao Li | Marek Rei | Lucia Specia
Findings of the Association for Computational Linguistics: EMNLP 2021

Neural Machine Translation models are sensitive to noise in the input texts, such as misspelled words and ungrammatical constructions. Existing robustness techniques generally fail when faced with unseen types of noise and their performance degrades on clean texts. In this paper, we focus on three types of realistic noise that are commonly generated by humans and introduce the idea of visual context to improve translation robustness for noisy texts. In addition, we describe a novel error correction training regime that can be used as an auxiliary task to further improve translation robustness. Experiments on English-French and English-German translation show that both multimodal and error correction components improve model robustness to noisy texts, while still retaining translation quality on clean texts.

pdf bib
Towards a Better Understanding of Noise in Natural Language Processing
Khetam Al Sharou | Zhenhao Li | Lucia Specia
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

In this paper, we propose a definition and taxonomy of various types of non-standard textual content – generally referred to as “noise” – in Natural Language Processing (NLP). While data pre-processing is undoubtedly important in NLP, especially when dealing with user-generated content, a broader understanding of different sources of noise and how to deal with them is an aspect that has been largely neglected. We provide a comprehensive list of potential sources of noise, categorise and describe them, and show the impact of a subset of standard pre-processing strategies on different tasks. Our main goal is to raise awareness of non-standard content – which should not always be considered as “noise” – and of the need for careful, task-dependent pre-processing. This is an alternative to blanket, all-encompassing solutions generally applied by researchers through “standard” pre-processing pipelines. The intention is for this categorisation to serve as a point of reference to support NLP researchers in devising strategies to clean, normalise or embrace non-standard content.


pdf bib
Exploring Model Consensus to Generate Translation Paraphrases
Zhenhao Li | Marina Fomicheva | Lucia Specia
Proceedings of the Fourth Workshop on Neural Generation and Translation

This paper describes our submission to the 2020 Duolingo Shared Task on Simultaneous Translation And Paraphrase for Language Education (STAPLE). This task focuses on improving the ability of neural MT systems to generate diverse translations. Our submission explores various methods, including N-best translation, Monte Carlo dropout, Diverse Beam Search, Mixture of Experts, Ensembling, and Lexical Substitution. Our main submission is based on the integration of multiple translations from multiple methods using Consensus Voting. Experiments show that the proposed approach achieves a considerable degree of diversity without introducing noisy translations. Our final submission achieves a 0.5510 weighted F1 score on the blind test set for the English-Portuguese track.

pdf bib
Findings of the WMT 2020 Shared Task on Machine Translation Robustness
Lucia Specia | Zhenhao Li | Juan Pino | Vishrav Chaudhary | Francisco Guzmán | Graham Neubig | Nadir Durrani | Yonatan Belinkov | Philipp Koehn | Hassan Sajjad | Paul Michel | Xian Li
Proceedings of the Fifth Conference on Machine Translation

We report the findings of the second edition of the shared task on improving robustness in Machine Translation (MT). The task aims to test current machine translation systems in their ability to handle challenges facing MT models to be deployed in the real world, including domain diversity and non-standard texts common in user generated content, especially in social media. We cover two language pairs – English-German and English-Japanese and provide test sets in zero-shot and few-shot variants. Participating systems are evaluated both automatically and manually, with an additional human evaluation for ”catastrophic errors”. We received 59 submissions by 11 participating teams from a variety of types of institutions.


pdf bib
A Comparison on Fine-grained Pre-trained Embeddings for the WMT19Chinese-English News Translation Task
Zhenhao Li | Lucia Specia
Proceedings of the Fourth Conference on Machine Translation (Volume 2: Shared Task Papers, Day 1)

This paper describes our submission to the WMT 2019 Chinese-English (zh-en) news translation shared task. Our systems are based on RNN architectures with pre-trained embeddings which utilize character and sub-character information. We compare models with these different granularity levels using different evaluating metics. We find that a finer granularity embeddings can help the model according to character level evaluation and that the pre-trained embeddings can also be beneficial for model performance marginally when the training data is limited.

pdf bib
Improving Neural Machine Translation Robustness via Data Augmentation: Beyond Back-Translation
Zhenhao Li | Lucia Specia
Proceedings of the 5th Workshop on Noisy User-generated Text (W-NUT 2019)

Neural Machine Translation (NMT) models have been proved strong when translating clean texts, but they are very sensitive to noise in the input. Improving NMT models robustness can be seen as a form of “domain” adaption to noise. The recently created Machine Translation on Noisy Text task corpus provides noisy-clean parallel data for a few language pairs, but this data is very limited in size and diversity. The state-of-the-art approaches are heavily dependent on large volumes of back-translated data. This paper has two main contributions: Firstly, we propose new data augmentation methods to extend limited noisy data and further improve NMT robustness to noise while keeping the models small. Secondly, we explore the effect of utilizing noise from external data in the form of speech transcripts and show that it could help robustness.