Zhenheng Tang
2024
LPZero: Language Model Zero-cost Proxy Search from Zero
Peijie Dong
|
Lujun Li
|
Xiang Liu
|
Zhenheng Tang
|
Xuebo Liu
|
Qiang Wang
|
Xiaowen Chu
Findings of the Association for Computational Linguistics: EMNLP 2024
Despite the outstanding performance, Neural Architecture Search (NAS) is criticized for massive computation. Recently, Zero-shot NAS has emerged as a promising approach by exploiting Zero-cost (ZC) proxies, which markedly reduce computational demands. Despite this, existing ZC proxies heavily rely on expert knowledge and incur significant trial-and-error costs. Particularly in NLP tasks, most existing ZC proxies fail to surpass the performance of the naive baseline. To address these challenges, we introduce a novel framework, LPZero, which is the first to automatically design zero-cost (ZC) proxies for various tasks, achieving higher ranking consistency than human-designed proxies. Specifically, we model the ZC proxy as a symbolic equation and incorporate a unified proxy search space that encompasses existing ZC proxies, which are composed of a predefined set of mathematical symbols. To heuristically search for the best ZC proxy, LPZero incorporates genetic programming to find the optimal symbolic composition. We propose a Predictive-Pruning Strategy (PPS), which preemptively eliminates unpromising proxies, thereby mitigating the risk of proxy degradation. Extensive experiments on FlexiBERT, GPT-2, and LLaMA-7B demonstrate LPZero’s superior ranking ability and performance on downstream tasks compared to current approaches.
Search
Fix data
Co-authors
- Xiaowen Chu 1
- Peijie Dong 1
- Lujun Li 1
- Xiang Liu (刘祥) 1
- Xuebo Liu 1
- show all...