Zhenpeng Su


pdf bib
Dial-MAE: ConTextual Masked Auto-Encoder for Retrieval-based Dialogue Systems
Zhenpeng Su | Xing W | Wei Zhou | Guangyuan Ma | Songlin Hu
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Dialogue response selection aims to select an appropriate response from several candidates based on a given user and system utterance history. Most existing works primarily focus on post-training and fine-tuning tailored for cross-encoders. However, there are no post-training methods tailored for dense encoders in dialogue response selection. We argue that when the current language model, based on dense dialogue systems (such as BERT), is employed as a dense encoder, it separately encodes dialogue context and response, leading to a struggle to achieve the alignment of both representations. Thus, we propose Dial-MAE (Dialogue Contextual Masking Auto-Encoder), a straightforward yet effective post-training technique tailored for dense encoders in dialogue response selection. Dial-MAE uses an asymmetric encoder-decoder architecture to compress the dialogue semantics into dense vectors, which achieves better alignment between the features of the dialogue context and response. Our experiments have demonstrated that Dial-MAE is highly effective, achieving state-of-the-art performance on two commonly evaluated benchmarks.

pdf bib
MiLe Loss: a New Loss for Mitigating the Bias of Learning Difficulties in Generative Language Models
Zhenpeng Su | Zijia Lin | Baixue Baixue | Hui Chen | Songlin Hu | Wei Zhou | Guiguang Ding | Xing W
Findings of the Association for Computational Linguistics: NAACL 2024

Generative language models are usually pre-trained on large text corpus via predicting the next token (i.e., sub-word/word/phrase) given the previous ones. Recent works have demonstrated the impressive performance of large generative language models on downstream tasks. However, existing generative language models generally neglect an inherent challenge in text corpus during training, i.e., the imbalance between frequent tokens and infrequent ones. It can lead a language model to be dominated by common and easy-to-learn tokens, thereby overlooking the infrequent and difficult-to-learn ones. To alleviate that, we propose a **MiLe Loss** function for **mi**tigating the bias of **le**arning difficulties with tokens. During training, it can dynamically assess the learning difficulty of a to-be-learned token, according to the information entropy of the corresponding predicted probability distribution over the vocabulary. Then it scales the training loss adaptively, trying to lead the model to focus more on the difficult-to-learn tokens. On the Pile dataset, we train generative language models at different scales of 468M, 1.2B, and 6.7B parameters. Experiments reveal that models incorporating the proposed MiLe Loss can gain consistent performance improvement on downstream benchmarks.