Zhenxiao Cheng


2024

pdf bib
Learning Intrinsic Dimension via Information Bottleneck for Explainable Aspect-based Sentiment Analysis
Zhenxiao Cheng | Jie Zhou | Wen Wu | Qin Chen | Liang He
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Gradient-based explanation methods are increasingly used to interpret neural models in natural language processing (NLP) due to their high fidelity. Such methods determine word-level importance using dimension-level gradient values through a norm function, often presuming equal significance for all gradient dimensions. However, in the context of Aspect-based Sentiment Analysis (ABSA), our preliminary research suggests that only specific dimensions are pertinent. To address this, we propose the Information Bottleneck-based Gradient (IBG) explanation framework for ABSA. This framework leverages an information bottleneck to refine word embeddings into a concise intrinsic dimension, maintaining essential features and omitting unrelated information. Comprehensive tests show that our IBG approach considerably improves both the models’ performance and the explanations’ clarity by identifying sentiment-aware features.