Zhenyu Hou
2024
ChatGLM-Math: Improving Math Problem-Solving in Large Language Models with a Self-Critique Pipeline
Yifan Xu
|
Xiao Liu
|
Xinghan Liu
|
Zhenyu Hou
|
Yueyan Li
|
Xiaohan Zhang
|
Zihan Wang
|
Aohan Zeng
|
Zhengxiao Du
|
Zhao Wenyi
|
Jie Tang
|
Yuxiao Dong
Findings of the Association for Computational Linguistics: EMNLP 2024
Large language models (LLMs) have shown excellent mastering of human language but still struggle in real-world applications that require mathematical problem-solving. While many strategies and datasets to enhance LLMs’ mathematics are developed, it remains a challenge to simultaneously maintain and improve both language and mathematical capabilities in deployed LLM systems. In this work, we tailor the Self-Critique pipeline, which addresses the challenge in the feedback learning stage of LLM alignment. We first train a general Math-Critique model from the LLM itself to provide feedback signals. Then, we sequentially employ rejective fine-tuning and direct preference optimization over the LLM’s own generations for data collection. Based on ChatGLM3-32B, we conduct experiments on both academic and our newly created challenging dataset, MathUserEval. Results show that our pipeline significantly enhances the LLM’s mathematical problem-solving while still improving its language ability, outperforming LLMs that could be two times larger. Related techniques have been deployed to ChatGLM, an online serving LLM. Related evaluation datasets and scripts are released at https://github.com/THUDM/ChatGLM-Math.
Search
Co-authors
- Yifan Xu 1
- Xiao Liu 1
- Xinghan Liu 1
- Yueyan Li 1
- Xiaohan Zhang 1
- show all...