The ever-growing biomedical publications magnify the challenge of extracting structured data from unstructured texts. This task involves two components: biomedical entity identification (Named Entity Recognition, NER) and their interrelation determination (Relation Extraction, RE). However, existing methods often neglect unique features of the biomedical literature, such as ambiguous entities, nested proper nouns, and overlapping relation triplets, and underutilize prior knowledge, leading to an intolerable performance decline in the biomedical domain, especially with limited annotated training data. In this paper, we propose the Biomedical Relation-First eXtraction (Bio-RFX) model by leveraging sentence-level relation classification before entity extraction to tackle entity ambiguity. Moreover, we exploit structural constraints between entities and relations to guide the model’s hypothesis space, enhancing extraction performance across different training scenarios. Comprehensive experimental results on biomedical datasets show that Bio-RFX achieves significant improvements on both NER and RE tasks. Even under the low-resource training scenarios, it outperforms all baselines in NER and has highly competitive performance compared to the state-of-the-art fine-tuned baselines in RE.
Multimodal Emotion Recognition in Conversations (ERC) aims to identify emotions in conversational videos. Current efforts focus on modeling both context-sensitive and speaker-sensitive dependencies and multimodal fusion. Despite the progress, models in Multimodal ERC (MERC) still struggle due to a lack of CommonSense Knowledge (CSK). In contrast, models in textual ERC typically employ CSK to enhance emotion inference. However, in multimodal scenarios, relying solely on textual CSK while neglecting visual CSK may hinder the understanding of visual emotional cues. To address this, we introduce a novel approach called Multiple Knowledge Enhanced Interactive Graph Network (MKE-IGN) to integrate multiple knowledge, such as textual and visual CSK, into the edge representations, thereby facilitating the modeling of relations between utterances and different types of CSK. Furthermore, considering that irrelevant CSK might be retained as noise, MKE-IGN adaptively selects this CSK guided by the mood-congruent effect and refines it based on contexts. Experimental results show that MKE-IGN outperforms state-of-the-art methods on two popular datasets.
The task of financial analysis primarily encompasses two key areas: stock trend prediction and the corresponding financial question answering. Currently, machine learning and deep learning algorithms (ML&DL) have been widely applied for stock trend predictions, leading to significant progress. However, these methods fail to provide reasons for predictions, lacking interpretability and reasoning processes. Also, they can not integrate textual information such as financial news or reports. Meanwhile, large language models (LLM) have remarkable textual understanding and generation ability. But due to the scarcity of financial training datasets and limited integration with real-time knowledge, LLM still suffer from hallucinations and unable to keep up with the latest information. To tackle these challenges, we first release AlphaFin datasets, combining traditional research datasets, real-time financial data, and handwritten chain-of-thought (CoT) data. It has positive impact on training LLM for completing financial analysis. We then use AlphaFin datasets to benchmark a state-of-the-art method, called Stock-Chain, for effectively tackling the financial analysis task, which integrates retrieval-augmented generation (RAG) techniques. Extensive experiments are conducted to demonstrate the effectiveness of our framework on financial analysis.
Document-level relation extraction (DocRE) aims to identify semantic labels among entities within a single document. One major challenge of DocRE is to dig decisive details regarding a specific entity pair from long text. However, in many cases, only a fraction of text carries required information, even in the manually labeled supporting evidence. To better capture and exploit instructive information, we propose a novel expLicit syntAx Refinement and Subsentence mOdeliNg based framework (LARSON). By introducing extra syntactic information, LARSON can model subsentences of arbitrary granularity and efficiently screen instructive ones. Moreover, we incorporate refined syntax into text representations which further improves the performance of LARSON. Experimental results on three benchmark datasets (DocRED, CDR, and GDA) demonstrate that LARSON significantly outperforms existing methods.