Zheyu Zhang
2024
mPLM-Sim: Better Cross-Lingual Similarity and Transfer in Multilingual Pretrained Language Models
Peiqin Lin
|
Chengzhi Hu
|
Zheyu Zhang
|
Andre Martins
|
Hinrich Schuetze
Findings of the Association for Computational Linguistics: EACL 2024
Recent multilingual pretrained language models (mPLMs) have been shown to encode strong language-specific signals, which are not explicitly provided during pretraining. It remains an open question whether it is feasible to employ mPLMs to measure language similarity, and subsequently use the similarity results to select source languages for boosting cross-lingual transfer. To investigate this, we propose mPLM-Sim, a language similarity measure that induces the similarities across languages from mPLMs using multi-parallel corpora. Our study shows that mPLM-Sim exhibits moderately high correlations with linguistic similarity measures, such as lexicostatistics, genealogical language family, and geographical sprachbund. We also conduct a case study on languages with low correlation and observe that mPLM-Sim yields more accurate similarity results. Additionally, we find that similarity results vary across different mPLMs and different layers within an mPLM. We further investigate whether mPLM-Sim is effective for zero-shot cross-lingual transfer by conducting experiments on both low-level syntactic tasks and high-level semantic tasks. The experimental results demonstrate that mPLM-Sim is capable of selecting better source languages than linguistic measures, resulting in a 1%-2% improvement in zero-shot cross-lingual transfer performance.
2023
Baby’s CoThought: Leveraging Large Language Models for Enhanced Reasoning in Compact Models
Zheyu Zhang
|
Han Yang
|
Bolei Ma
|
David Rügamer
|
Ercong Nie
Proceedings of the BabyLM Challenge at the 27th Conference on Computational Natural Language Learning
Search
Fix data
Co-authors
- Chengzhi Hu 1
- Peiqin Lin 1
- Bolei Ma 1
- André F. T. Martins 1
- Ercong Nie 1
- show all...