Zheyuan Liu


2024

pdf bib
Personalized Pieces: Efficient Personalized Large Language Models through Collaborative Efforts
Zhaoxuan Tan | Zheyuan Liu | Meng Jiang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Personalized large language models (LLMs) aim to tailor interactions, content, and recommendations to individual user preferences. While parameter-efficient fine-tuning (PEFT) methods excel in performance and generalization, they are costly and limit communal benefits when used individually. To this end, we introduce Personalized Pieces (Per-Pcs), a framework that allows users to safely share and assemble personalized PEFT efficiently with collaborative efforts. Per-Pcs involves selecting sharers, breaking their PEFT into pieces, and training gates for each piece. These pieces are added to a pool, from which target users can select and assemble personalized PEFT using their history data. This approach preserves privacy and enables fine-grained user modeling without excessive storage and computation demands. Experimental results show Per-Pcs outperforms non-personalized and PEFT retrieval baselines, offering performance comparable to OPPU with significantly lower resource use across six tasks. Further analysis highlights Per-Pcs’s robustness concerning sharer count and selection strategy, pieces sharing ratio, and scalability in computation time and storage space. Per-Pcs’s modularity promotes safe sharing, making LLM personalization more efficient, effective, and widely accessible through collaborative efforts.

pdf bib
Democratizing Large Language Models via Personalized Parameter-Efficient Fine-tuning
Zhaoxuan Tan | Qingkai Zeng | Yijun Tian | Zheyuan Liu | Bing Yin | Meng Jiang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Personalization in large language models (LLMs) is increasingly important, aiming to align the LLMs’ interactions, content, and recommendations with individual user preferences. Recent advances have highlighted effective prompt design by enriching user queries with non-parametric knowledge through behavior history retrieval and textual profiles. However, these methods faced limitations due to a lack of model ownership, resulting in constrained customization and privacy issues, and often failed to capture complex, dynamic user behavior patterns. To address these shortcomings, we introduce One PEFT Per User (OPPU), employing personalized parameter-efficient fine-tuning (PEFT) modules to store user-specific behavior patterns and preferences. By plugging in personal PEFT parameters, users can own and use their LLMs individually. OPPU integrates parametric user knowledge in the personal PEFT parameters with non-parametric knowledge from retrieval and profiles, adapting LLMs to user behavior shifts. Experimental results demonstrate that OPPU significantly outperforms existing prompt-based methods across seven diverse tasks in the LaMP benchmark. Further studies reveal OPPU’s enhanced capabilities in handling user behavior shifts, modeling users at different activity levels, maintaining robustness across various user history formats, and displaying versatility with different PEFT methods.

pdf bib
Towards Safer Large Language Models through Machine Unlearning
Zheyuan Liu | Guangyao Dou | Zhaoxuan Tan | Yijun Tian | Meng Jiang
Findings of the Association for Computational Linguistics: ACL 2024

The rapid advancement of Large Language Models (LLMs) has demonstrated their vast potential across various domains, attributed to their extensive pretraining knowledge and exceptional generalizability. However, LLMs often encounter challenges in generating harmful content when faced with problematic prompts. To address this problem, existing work attempted to implement a gradient ascent based approach to prevent LLMs from producing harmful output. While these methods can be effective, they frequently impact the model utility in responding to normal prompts. To address this gap, we introduce Selective Knowledge negation Unlearning (SKU), a novel unlearning framework for LLMs, designed to eliminate harmful knowledge while preserving utility on normal prompts. Specifically, SKU is consisted of two stages: harmful knowledge acquisition stage and knowledge negation stage. The first stage aims to identify and acquire harmful knowledge within the model, whereas the second is dedicated to remove this knowledge. SKU selectively isolates and removes harmful knowledge in model parameters, ensuring the model’s performance remains robust on normal prompts. Our experiments conducted across various LLM architectures demonstrate that SKU identifies a good balance point between removing harmful information and preserving utility.

2017

pdf bib
KnowYourNyms? A Game of Semantic Relationships
Ross Mechanic | Dean Fulgoni | Hannah Cutler | Sneha Rajana | Zheyuan Liu | Bradley Jackson | Anne Cocos | Chris Callison-Burch | Marianna Apidianaki
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

Semantic relation knowledge is crucial for natural language understanding. We introduce “KnowYourNyms?”, a web-based game for learning semantic relations. While providing users with an engaging experience, the application collects large amounts of data that can be used to improve semantic relation classifiers. The data also broadly informs us of how people perceive the relationships between words, providing useful insights for research in psychology and linguistics.