Zhibin Lan


2024

pdf bib
Empowering Backbone Models for Visual Text Generation with Input Granularity Control and Glyph-Aware Training
Wenbo Li | Guohao Li | Zhibin Lan | Xue Xu | Wanru Zhuang | Jiachen Liu | Xinyan Xiao | Jinsong Su
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Diffusion-based text-to-image models have demonstrated impressive achievements in diversity and aesthetics but struggle to generate images with legible visual texts. Existing backbone models have limitations such as misspelling, failing to generate texts, and lack of support for Chinese texts, but their development shows promising potential. In this paper, we propose a series of methods, aiming to empower backbone models to generate visual texts in English and Chinese. We first conduct a preliminary study revealing that BPE tokenization and insufficient learning of cross-attention modules restrict the performance of the backbone models. Based on these observations, we make the following improvements: (1) We design a mixed granularity input strategy to provide more suitable text representations; (2) We propose to augment the conventional training objective with three glyph-aware training losses, which enhance the learning of cross-attention modules and encourage the model to focus on visual texts. Through experiments, we demonstrate that our methods can effectively empower backbone models to generate semantic relevant, aesthetically appealing, and accurate visual text images, while maintaining their fundamental image generation quality.

pdf bib
Translatotron-V(ison): An End-to-End Model for In-Image Machine Translation
Zhibin Lan | Liqiang Niu | Fandong Meng | Jie Zhou | Min Zhang | Jinsong Su
Findings of the Association for Computational Linguistics: ACL 2024

2023

pdf bib
Exploring Better Text Image Translation with Multimodal Codebook
Zhibin Lan | Jiawei Yu | Xiang Li | Wen Zhang | Jian Luan | Bin Wang | Degen Huang | Jinsong Su
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Text image translation (TIT) aims to translate the source texts embedded in the image to target translations, which has a wide range of applications and thus has important research value. However, current studies on TIT are confronted with two main bottlenecks: 1) this task lacks a publicly available TIT dataset, 2) dominant models are constructed in a cascaded manner, which tends to suffer from the error propagation of optical character recognition (OCR). In this work, we first annotate a Chinese-English TIT dataset named OCRMT30K, providing convenience for subsequent studies. Then, we propose a TIT model with a multimodal codebook, which is able to associate the image with relevant texts, providing useful supplementary information for translation. Moreover, we present a multi-stage training framework involving text machine translation, image-text alignment, and TIT tasks, which fully exploits additional bilingual texts, OCR dataset and our OCRMT30K dataset to train our model. Extensive experiments and in-depth analyses strongly demonstrate the effectiveness of our proposed model and training framework.