Zhichao Geng


2022

pdf bib
A Simple Hash-Based Early Exiting Approach For Language Understanding and Generation
Tianxiang Sun | Xiangyang Liu | Wei Zhu | Zhichao Geng | Lingling Wu | Yilong He | Yuan Ni | Guotong Xie | Xuanjing Huang | Xipeng Qiu
Findings of the Association for Computational Linguistics: ACL 2022

Early exiting allows instances to exit at different layers according to the estimation of difficulty. Previous works usually adopt heuristic metrics such as the entropy of internal outputs to measure instance difficulty, which suffers from generalization and threshold-tuning. In contrast, learning to exit, or learning to predict instance difficulty is a more appealing way. Though some effort has been devoted to employing such “learn-to-exit” modules, it is still unknown whether and how well the instance difficulty can be learned. As a response, we first conduct experiments on the learnability of instance difficulty, which demonstrates that modern neural models perform poorly on predicting instance difficulty. Based on this observation, we propose a simple-yet-effective Hash-based Early Exiting approach HashEE) that replaces the learn-to-exit modules with hash functions to assign each token to a fixed exiting layer. Different from previous methods, HashEE requires no internal classifiers nor extra parameters, and therefore is more efficient. HashEE can be used in various tasks (including language understanding and generation) and model architectures such as seq2seq models. Experimental results on classification, regression, and generation tasks demonstrate that HashEE can achieve higher performance with fewer FLOPs and inference time compared with previous state-of-the-art early exiting methods.

pdf bib
Improving Abstractive Dialogue Summarization with Speaker-Aware Supervised Contrastive Learning
Zhichao Geng | Ming Zhong | Zhangyue Yin | Xipeng Qiu | Xuanjing Huang
Proceedings of the 29th International Conference on Computational Linguistics

Pre-trained models have brought remarkable success on the text summarization task. For dialogue summarization, the subdomain of text summarization, utterances are concatenated to flat text before being processed. As a result, existing summarization systems based on pre-trained models are unable to recognize the unique format of the speaker-utterance pair well in the dialogue. To investigate this issue, we conduct probing tests and manual analysis, and find that the powerful pre-trained model can not identify different speakers well in the conversation, which leads to various factual errors. Moreover, we propose three speaker-aware supervised contrastive learning (SCL) tasks: Token-level SCL, Turn-level SCL, and Global-level SCL. Comprehensive experiments demonstrate that our methods achieve significant performance improvement on two mainstream dialogue summarization datasets. According to detailed human evaluations, pre-trained models equipped with SCL tasks effectively generate summaries with better factual consistency.

2021

pdf bib
fastHan: A BERT-based Multi-Task Toolkit for Chinese NLP
Zhichao Geng | Hang Yan | Xipeng Qiu | Xuanjing Huang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: System Demonstrations

We present fastHan, an open-source toolkit for four basic tasks in Chinese natural language processing: Chinese word segmentation (CWS), Part-of-Speech (POS) tagging, named entity recognition (NER), and dependency parsing. The backbone of fastHan is a multi-task model based on a pruned BERT, which uses the first 8 layers in BERT. We also provide a 4-layer base model compressed from the 8-layer model. The joint-model is trained and evaluated on 13 corpora of four tasks, yielding near state-of-the-art (SOTA) performance in dependency parsing and NER, achieving SOTA performance in CWS and POS. Besides, fastHan’s transferability is also strong, performing much better than popular segmentation tools on a non-training corpus. To better meet the need of practical application, we allow users to use their own labeled data to further fine-tune fastHan. In addition to its small size and excellent performance, fastHan is user-friendly. Implemented as a python package, fastHan isolates users from the internal technical details and is convenient to use. The project is released on Github.