Zhicong Lu


2024

pdf bib
Rethinking the Reversal Curse of LLMs: a Prescription from Human Knowledge Reversal
Zhicong Lu | Li Jin | Peiguang Li | Yu Tian | Linhao Zhang | Sirui Wang | Guangluan Xu | Changyuan Tian | Xunliang Cai
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) have exhibited exceptional performance across diverse domains. However, recent studies reveal that LLMs are plagued by the “reversal curse”. Most existing methods rely on aggressive sample permutation and pay little attention to delving into the underlying reasons for this issue, resulting in only partial mitigation. In this paper, inspired by human knowledge reversal, we investigate and quantify the individual influence of three potential reasons on the reversal curse: 1) knowledge clarity, 2) entity correlation modeling, and 3) pairwise relationship reasoning capability. Motivated by the analysis of these reasons, we propose a novel **P**airwise entity **O**rder- and **R**elationship-**E**nhanced (**PORE**) data strategy, which facilitates bidirectional entity correlation modeling and pairwise relationship reasoning to overcome the reversal curse. Specifically, PORE augments the samples with entity order-reversal and semantically preserved question-answer pairs, enhancing the encoding of entity correlations in both directions. PORE also employs entity-interleaved pairwise relationship data, which elevates the model’s capability for relationship reasoning. Additionally, to improve the recall of reverse relationships, we leverage knowledge clarity to construct high-clarity data for PORE. Extensive experimental results on available and two newly assembled datasets demonstrate the effectiveness and generalization of our method in both data-sufficient and -constrained situations.

2023

pdf bib
Narrative Order Aware Story Generation via Bidirectional Pretraining Model with Optimal Transport Reward
Zhicong Lu | Li Jin | Guangluan Xu | Linmei Hu | Nayu Liu | Xiaoyu Li | Xian Sun | Zequn Zhang | Kaiwen Wei
Findings of the Association for Computational Linguistics: EMNLP 2023

To create a captivating story, a writer often plans a sequence of logically coherent events and ingeniously manipulates the narrative order to generate flashback in place. However, existing storytelling systems suffer from both insufficient understanding of event correlations and inadequate awareness of event temporal order (e.g., go to hospital <after> get ill), making it challenging to generate high-quality events that balance the logic and narrative order of story. In this paper, we propose a narrative order aware framework BPOT (Bidirectional Pretraining Model with Optimal Transport Reward) for story generation, which presents a bidirectional pretrained model to encode event correlations and pairwise event order. We also design a reinforcement learning algorithm with novel optimal transport reward to further improve the quality of generated events in the fine-tuning stage. Specifically, a narrative order aware event sequence model is pretrained with the joint learning objectives of event blank infilling and pairwise order prediction. Then, reinforcement learning with novel optimal transport reward is designed to further improve the generated event quality in the fine-tuning stage. The novel optimal transport reward captures the mappings between the generated events and the sentences in the story, effectively measuring the quality of generated events. Both automatic and manual evaluation results demonstrate the superiority of our framework in generating logically coherent stories with flashbacks.