Intrinsic self-correct was a method that instructed large language models (LLMs) to verify and correct their responses without external feedback. Unfortunately, the study concluded that the LLMs could not self-correct reasoning yet. We find that a simple yet effective prompting method enhances LLM performance in identifying and correcting inaccurate answers without external feedback.That is to mask a key condition in the question, add the current response to construct a verification question, and predict the condition to verify the response. The condition can be an entity in an open-domain question or a numerical value in an arithmetic question, which requires minimal effort (via prompting) to identify. We propose an iterative verify-then-correct framework to progressively identify and correct (probably) false responses, named ProCo. We conduct experiments on three reasoning tasks. On average, ProCo, with GPT-3.5-Turbo-1106 as the backend LLM, yields +6.8 exact match on four open-domain question answering datasets, +14.1 accuracy on three arithmetic reasoning datasets, and +9.6 accuracy on a commonsense reasoning dataset, compared to Self-Correct.Our implementation is made publicly available at https://wzy6642.github.io/proco.github.io/.
Supervised fine-tuning enhances the problem-solving abilities of language models across various mathematical reasoning tasks. To maximize such benefits, existing research focuses on *broadening* the training set with various data augmentation techniques, which is effective for standard single-round question-answering settings. Our work introduces a novel technique aimed at cultivating a *deeper* understanding of the training problems at hand, enhancing performance not only in standard settings but also in more complex scenarios that require reflective thinking. Specifically, we propose **reflective augmentation**, a method that embeds problem reflection into each training instance. It trains the model to consider alternative perspectives and engage with abstractions and analogies, thereby fostering a thorough comprehension through reflective reasoning. Extensive experiments validate the achievement of our aim, underscoring the unique advantages of our method and its complementary nature relative to existing augmentation techniques.
Evaluating the ability of large language models (LLMs) to follow complex human-written instructions is essential for their deployment in real-world applications. While benchmarks like Chatbot Arena use human judges to assess model performance, they are resource-intensive and time-consuming. Alternative methods using LLMs as judges, such as AlpacaEval, MT Bench, WildBench, and InFoBench offer improvements but still do not capture that certain complex instruction aspects are more important than others to follow.To address this gap, we propose a novel evaluation metric, TOWER, that incorporates human-judged importance into the assessment of complex instruction following. We show that human annotators agree with tree-based representations of these complex instructions nearly as much as they agree with other human annotators. We release tree-based annotations of the InFoBench dataset and the corresponding evaluation code to facilitate future research.
The digital landscape is rapidly evolving with an ever-increasing volume of online news, emphasizing the need for swift and precise analysis of complex events.We refer to the complex events composed of many news articles over an extended period as Temporal Complex Event (TCE). This paper proposes a novel approach using Large Language Models (LLMs) to systematically extract and analyze the event chain within TCE, characterized by their key points and timestamps. We establish a benchmark, named TCELongBench, to evaluate the proficiency of LLMs in handling temporal dynamics and understanding extensive text. This benchmark encompasses three distinct tasks - reading comprehension, temporal sequencing, and future event forecasting. In the experiment, we leverage retrieval-augmented generation (RAG) method and LLMs with long context window to deal with lengthy news articles of TCE. Our findings indicate that models with suitable retrievers exhibit comparable performance with those utilizing long context window.
Instruction tuning has remarkably advanced large language models (LLMs) in understanding and responding to diverse human instructions. Despite the success in high-resource languages, its application in lower-resource ones faces challenges due to the imbalanced foundational abilities of LLMs across different languages, stemming from the uneven language distribution in their pre-training data. To tackle this issue, we propose pivot language guided generation (PLUG), an approach that utilizes a high-resource language, primarily English, as the pivot to enhance instruction tuning in lower-resource languages. It trains the model to first process instructions in the pivot language, and then produce responses in the target language. To evaluate our approach, we introduce a benchmark, X-AlpacaEval, of instructions in 4 languages (Chinese, Korean, Italian, and Spanish), each annotated by professional translators. Our approach demonstrates a significant improvement in the instruction-following abilities of LLMs by 29% on average, compared to directly responding in the target language alone. Further experiments validate the versatility of our approach by employing alternative pivot languages beyond English to assist languages where LLMs exhibit lower proficiency. Code and data are available at https://github.com/ytyz1307zzh/PLUG.
Document retrieval is a key stage of standard Web search engines. Existing dual-encoder dense retrievers obtain representations for questions and documents independently, allowing for only shallow interactions between them. To overcome this limitation, recent autoregressive search engines replace the dual-encoder architecture by directly generating identifiers for relevant documents in the candidate pool. However, the training cost of such autoregressive search engines rises sharply as the number of candidate documents increases. In this paper, we find that large language models (LLMs) can follow human instructions to directly generate URLs for document retrieval. Surprisingly, when providing a few Query-URL pairs as in-context demonstrations, LLMs can generate Web URLs where nearly 90% of the corresponding documents contain correct answers to open-domain questions. In this way, LLMs can be thought of as built-in search engines, since they have not been explicitly trained to map questions to document identifiers. Experiments demonstrate that our method can consistently achieve better retrieval performance than existing retrieval approaches by a significant margin on three open-domain question answering benchmarks, under both zero and few-shot settings. The code for this work can be found at https://github.com/Ziems/llm-url.
Large language models (LLMs) can perform a wide range of tasks by following natural language instructions, without the necessity of task-specific fine-tuning. Unfortunately, the performance of LLMs is greatly influenced by the quality of these instructions, and manually writing effective instructions for each task is a laborious and subjective process. In this paper, we introduce Auto-Instruct, a novel method to automatically improve the quality of instructions provided to LLMs. Our method leverages the inherent generative ability of LLMs to produce diverse candidate instructions for a given task, and then ranks them using a scoring model trained on a variety of 575 existing NLP tasks. In experiments on 118 out-of-domain tasks, Auto-Instruct surpasses both human-written instructions and existing baselines of LLM-generated instructions. Furthermore, our method exhibits notable generalizability even with other LLMs that are not incorporated into its training process.
Comparative reasoning is a process of comparing objects, concepts, or entities to draw conclusions, which constitutes a fundamental cognitive ability. In this paper, we propose a novel framework to pre-train language models for enhancing their abilities of comparative reasoning over texts. While there have been approaches for NLP tasks that require comparative reasoning, they suffer from costly manual data labeling and limited generalizability to different tasks. Our approach introduces a novel method of collecting scalable data for text-based entity comparison, which leverages both structured and unstructured data. Moreover, we present a framework of pre-training language models via three novel objectives on comparative reasoning. Evaluation on downstream tasks including comparative question answering, question generation, and summarization shows that our pre-training framework significantly improves the comparative reasoning abilities of language models, especially under low-resource conditions. This work also releases the first integrated benchmark for comparative reasoning.
Multi-task learning (MTL) has become increasingly popular in natural language processing (NLP) because it improves the performance of related tasks by exploiting their commonalities and differences. Nevertheless, it is still not understood very well how multi-task learning can be implemented based on the relatedness of training tasks. In this survey, we review recent advances of multi-task learning methods in NLP, with the aim of summarizing them into two general multi-task training methods based on their task relatedness: (i) joint training and (ii) multi-step training. We present examples in various NLP downstream applications, summarize the task relationships and discuss future directions of this promising topic.
Contrast consistency, the ability of a model to make consistently correct predictions in the presence of perturbations, is an essential aspect in NLP. While studied in tasks such as sentiment analysis and reading comprehension, it remains unexplored in open-domain question answering (OpenQA) due to the difficulty of collecting perturbed questions that satisfy factuality requirements. In this work, we collect minimally edited questions as challenging contrast sets to evaluate OpenQA models. Our collection approach combines both human annotation and large language model generation. We find that the widely used dense passage retriever (DPR) performs poorly on our contrast sets, despite fitting the training set well and performing competitively on standard test sets. To address this issue, we introduce a simple and effective query-side contrastive loss with the aid of data augmentation to improve DPR training. Our experiments on the contrast sets demonstrate that DPR’s contrast consistency is improved without sacrificing its accuracy on the standard test sets.1
Generative commonsense reasoning (GCR) in natural language is to reason about the commonsense while generating coherent text. Recent years have seen a surge of interest in improving the generation quality of commonsense reasoning tasks. Nevertheless, these approaches have seldom investigated diversity in the GCR tasks, which aims to generate alternative explanations for a real-world situation or predict all possible outcomes. Diversifying GCR is challenging as it expects to generate multiple outputs that are not only semantically different but also grounded in commonsense knowledge. In this paper, we propose MoKGE, a novel method that diversifies the generative reasoning by a mixture of expert (MoE) strategy on commonsense knowledge graphs (KG). A set of knowledge experts seek diverse reasoning on KG to encourage various generation outputs. Empirical experiments demonstrated that MoKGE can significantly improve the diversity while achieving on par performance on accuracy on two GCR benchmarks, based on both automatic and human evaluations.
Entities, as important carriers of real-world knowledge, play a key role in many NLP tasks.We focus on incorporating entity knowledge into an encoder-decoder framework for informative text generation. Existing approaches tried to index, retrieve, and read external documents as evidence, but they suffered from a large computational overhead. In this work, we propose an encoder-decoder framework with an entity memory, namely EDMem. The entity knowledge is stored in the memory as latent representations, and the memory is pre-trained on Wikipedia along with encoder-decoder parameters. To precisely generate entity names, we design three decoding methods to constrain entity generation by linking entities in the memory. EDMem is a unified framework that can be used on various entity-intensive question answering and generation tasks. Extensive experimental results show that EDMem outperforms both memory-based auto-encoder models and non-memory encoder-decoder models.
A common thread of retrieval-augmented methods in the existing literature focuses on retrieving encyclopedic knowledge, such as Wikipedia, which facilitates well-defined entity and relation spaces that can be modeled. However, applying such methods to commonsense reasoning tasks faces two unique challenges, i.e., the lack of a general large-scale corpus for retrieval and a corresponding effective commonsense retriever. In this paper, we systematically investigate how to leverage commonsense knowledge retrieval to improve commonsense reasoning tasks. We proposed a unified framework of retrieval-augmented commonsense reasoning (called RACo), including a newly constructed commonsense corpus with over 20 million documents and novel strategies for training a commonsense retriever. We conducted experiments on four different commonsense reasoning tasks. Extensive evaluation results showed that our proposed RACo can significantly outperform other knowledge-enhanced method counterparts, achieving new SoTA performance on the CommonGen and CREAK leaderboards.
Generative commonsense reasoning (GCR) in natural language is to reason about the commonsense while generating coherent text. Recent years have seen a surge of interest in improving the generation quality of commonsense reasoning tasks. Nevertheless, these approaches have seldom investigated diversity in the GCR tasks, which aims to generate alternative explanations for a real-world situation or predict all possible outcomes. Diversifying GCR is challenging as it expects to generate multiple outputs that are not only semantically different but also grounded in commonsense knowledge. In this paper, we propose MoKGE, a novel method that diversifies the generative reasoning by a mixture of expert (MoE) strategy on commonsense knowledge graphs (KG). A set of knowledge experts seek diverse reasoning on KG to encourage various generation outputs. Empirical experiments demonstrated that MoKGE can significantly improve the diversity while achieving on par performance on accuracy on two GCR benchmarks, based on both automatic and human evaluations.
Automatic commenting of online articles can provide additional opinions and facts to the reader, which improves user experience and engagement on social media platforms. Previous work focuses on automatic commenting based solely on textual content. However, in real-scenarios, online articles usually contain multiple modal contents. For instance, graphic news contains plenty of images in addition to text. Contents other than text are also vital because they are not only more attractive to the reader but also may provide critical information. To remedy this, we propose a new task: cross-model automatic commenting (CMAC), which aims to make comments by integrating multiple modal contents. We construct a large-scale dataset for this task and explore several representative methods. Going a step further, an effective co-attention model is presented to capture the dependency between textual and visual information. Evaluation results show that our proposed model can achieve better performance than competitive baselines.