Despite the great success of Large Vision-Language Models (LVLMs), they inevitably suffer from hallucination. As we know, both the visual encoder and the Large Language Model (LLM) decoder in LVLMs are Transformer-based, allowing the model to extract visual information and generate text outputs via attention mechanisms. We find that the attention distribution of LLM decoder on image tokens is highly consistent with the visual encoder and both distributions tend to focus on particular background tokens rather than the referred objects in the image. We attribute to the unexpected attention distribution to an inherent flaw in the visual encoder itself, which misguides LLMs to over emphasize the redundant information and generate object hallucination. To address the issue, we propose DAMRO, a novel training-free strategy that **D**ive into **A**ttention **M**echanism of LVLM to **R**educe **O**bject Hallucination. Specifically, our approach employs classification token (CLS) of ViT to filter out high-attention tokens scattered in the background and then eliminate their influence during decoding stage. We evaluate our method on LVLMs including LLaVA-1.5, LLaVA-NeXT and InstructBLIP, using various benchmarks such as POPE, CHAIR, MME and GPT-4V Aided Evaluation. The results demonstrate that our approach significantly reduces the impact of these outlier tokens, thus effectively alleviating the hallucination of LVLMs.
Recent large-scale Visual-Language Generative Models (VLGMs) have achieved unprecedented improvement in multimodal image/text generation. However, these models might also generate toxic content, e.g., offensive text and pornography images, raising significant ethical risks. Despite exhaustive studies on toxic degeneration of language models, this problem remains largely unexplored within the context of visual-language generation. This work delves into the propensity for toxicity generation and susceptibility to toxic data across various VLGMs. For this purpose, we built ToViLaG, a dataset comprising 32K co-toxic/mono-toxic text-image pairs and 1K innocuous but evocative text that tends to stimulate toxicity. Furthermore, we propose WInToRe, a novel toxicity metric tailored to visual-language generation, which theoretically reflects different aspects of toxicity considering both input and output. On such a basis, we benchmarked the toxicity of a diverse spectrum of VLGMs and discovered that some models do more evil than expected while some are more vulnerable to infection, underscoring the necessity of VLGMs detoxification. Therefore, we develop an innovative bottleneck-based detoxification method. Our method could reduce toxicity while maintaining comparable generation quality, providing a promising initial solution to this line of research.
Opinion summarization is expected to digest larger review sets and provide summaries from different perspectives. However, most existing solutions are deficient in epitomizing extensive reviews and offering opinion summaries from various angles due to the lack of designs for information selection. To this end, we propose SubSumm, a supervised summarization framework for large-scale multi-perspective opinion summarization. SubSumm consists of a review sampling strategy set and a two-stage training scheme. The sampling strategies take sentiment orientation and contrastive information value into consideration, with which the review subsets from different perspectives and quality levels can be selected. Subsequently, the summarizer is encouraged to learn from the sub-optimal and optimal subsets successively in order to capitalize on the massive input. Experimental results on AmaSum and Rotten Tomatoes datasets demonstrate that SubSumm is adept at generating pros, cons, and verdict summaries from hundreds of input reviews. Furthermore, our in-depth analysis verifies that the advanced selection of review subsets and the two-stage training scheme are vital to boosting the summarization performance.
Knowledge graph question answering (KGQA) based on information retrieval aims to answer a question by retrieving answer from a large-scale knowledge graph. Most existing methods first roughly retrieve the knowledge subgraphs (KSG) that may contain candidate answer, and then search for the exact answer in the KSG. However, the KSG may contain thousands of candidate nodes since the knowledge graph involved in querying is often of large scale, thus decreasing the performance of answer selection. To tackle this problem, we first propose to partition the retrieved KSG to several smaller sub-KSGs via a new subgraph partition algorithm and then present a graph-augmented learning to rank model to select the top-ranked sub-KSGs from them. Our proposed model combines a novel subgraph matching networks to capture global interactions in both question and subgraphs and an Enhanced Bilateral Multi-Perspective Matching model to capture local interactions. Finally, we apply an answer selection model on the full KSG and the top-ranked sub-KSGs respectively to validate the effectiveness of our proposed graph-augmented learning to rank method. The experimental results on multiple benchmark datasets have demonstrated the effectiveness of our approach.
Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder. Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder. Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification.
Story generation has emerged as an interesting yet challenging NLP task in recent years. Some existing studies aim at generating fluent and coherent stories from keywords and outlines; while others attempt to control the global features of the story, such as emotion, style and topic. However, these works focus on coarse-grained control on the story, neglecting control on the details of the story, which is also crucial for the task. To fill the gap, this paper proposes a model for fine-grained control on the story, which allows the generation of customized stories with characters, corresponding actions and emotions arbitrarily assigned. Extensive experimental results on both automatic and human manual evaluations show the superiority of our method. It has strong controllability to generate stories according to the fine-grained personalized guidance, unveiling the effectiveness of our methodology. Our code is available at https://github.com/victorup/CHAE.