Zhihua Wei


2022

pdf bib
SpeechT5: Unified-Modal Encoder-Decoder Pre-Training for Spoken Language Processing
Junyi Ao | Rui Wang | Long Zhou | Chengyi Wang | Shuo Ren | Yu Wu | Shujie Liu | Tom Ko | Qing Li | Yu Zhang | Zhihua Wei | Yao Qian | Jinyu Li | Furu Wei
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Motivated by the success of T5 (Text-To-Text Transfer Transformer) in pre-trained natural language processing models, we propose a unified-modal SpeechT5 framework that explores the encoder-decoder pre-training for self-supervised speech/text representation learning. The SpeechT5 framework consists of a shared encoder-decoder network and six modal-specific (speech/text) pre/post-nets. After preprocessing the input speech/text through the pre-nets, the shared encoder-decoder network models the sequence-to-sequence transformation, and then the post-nets generate the output in the speech/text modality based on the output of the decoder. Leveraging large-scale unlabeled speech and text data, we pre-train SpeechT5 to learn a unified-modal representation, hoping to improve the modeling capability for both speech and text. To align the textual and speech information into this unified semantic space, we propose a cross-modal vector quantization approach that randomly mixes up speech/text states with latent units as the interface between encoder and decoder. Extensive evaluations show the superiority of the proposed SpeechT5 framework on a wide variety of spoken language processing tasks, including automatic speech recognition, speech synthesis, speech translation, voice conversion, speech enhancement, and speaker identification.

pdf bib
CHAE: Fine-Grained Controllable Story Generation with Characters, Actions and Emotions
Xinpeng Wang | Han Jiang | Zhihua Wei | Shanlin Zhou
Proceedings of the 29th International Conference on Computational Linguistics

Story generation has emerged as an interesting yet challenging NLP task in recent years. Some existing studies aim at generating fluent and coherent stories from keywords and outlines; while others attempt to control the global features of the story, such as emotion, style and topic. However, these works focus on coarse-grained control on the story, neglecting control on the details of the story, which is also crucial for the task. To fill the gap, this paper proposes a model for fine-grained control on the story, which allows the generation of customized stories with characters, corresponding actions and emotions arbitrarily assigned. Extensive experimental results on both automatic and human manual evaluations show the superiority of our method. It has strong controllability to generate stories according to the fine-grained personalized guidance, unveiling the effectiveness of our methodology. Our code is available at https://github.com/victorup/CHAE.

pdf bib
Graph-augmented Learning to Rank for Querying Large-scale Knowledge Graph
Hanning Gao | Lingfei Wu | Po Hu | Zhihua Wei | Fangli Xu | Bo Long
Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Knowledge graph question answering (KGQA) based on information retrieval aims to answer a question by retrieving answer from a large-scale knowledge graph. Most existing methods first roughly retrieve the knowledge subgraphs (KSG) that may contain candidate answer, and then search for the exact answer in the KSG. However, the KSG may contain thousands of candidate nodes since the knowledge graph involved in querying is often of large scale, thus decreasing the performance of answer selection. To tackle this problem, we first propose to partition the retrieved KSG to several smaller sub-KSGs via a new subgraph partition algorithm and then present a graph-augmented learning to rank model to select the top-ranked sub-KSGs from them. Our proposed model combines a novel subgraph matching networks to capture global interactions in both question and subgraphs and an Enhanced Bilateral Multi-Perspective Matching model to capture local interactions. Finally, we apply an answer selection model on the full KSG and the top-ranked sub-KSGs respectively to validate the effectiveness of our proposed graph-augmented learning to rank method. The experimental results on multiple benchmark datasets have demonstrated the effectiveness of our approach.