Zhiming Mao


2024

pdf bib
Visually Guided Generative Text-Layout Pre-training for Document Intelligence
Zhiming Mao | Haoli Bai | Lu Hou | Lifeng Shang | Xin Jiang | Qun Liu | Kam-Fai Wong
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Prior study shows that pre-training techniques can boost the performance of visual document understanding (VDU), which typically requires models to gain abilities to perceive and reason both document texts and layouts (e.g., locations of texts and table-cells). To this end, we propose visually guided generative text-layout pre-training, named ViTLP. Given a document image, the model optimizes hierarchical language and layout modeling objectives to generate the interleaved text and layout sequence. In addition, to address the limitation of processing long documents by Transformers, we introduce a straightforward yet effective multi-segment generative pre-training scheme, facilitating ViTLP to process word-intensive documents of any length. ViTLP can function as a native OCR model to localize and recognize texts of document images. Besides, ViTLP can be effectively applied to various downstream VDU tasks. Extensive experiments show that ViTLP achieves competitive performance over existing baselines on benchmark VDU tasks, including information extraction, document classification, and document question answering.

2023

pdf bib
UniTRec: A Unified Text-to-Text Transformer and Joint Contrastive Learning Framework for Text-based Recommendation
Zhiming Mao | Huimin Wang | Yiming Du | Kam-Fai Wong
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Prior study has shown that pretrained language models (PLM) can boost the performance of text-based recommendation. In contrast to previous works that either use PLM to encode user history as a whole input text, or impose an additional aggregation network to fuse multi-turn history representations, we propose a unified local- and global-attention Transformer encoder to better model two-level contexts of user history. Moreover, conditioned on user history encoded by Transformer encoders, our framework leverages Transformer decoders to estimate the language perplexity of candidate text items, which can serve as a straightforward yet significant contrastive signal for user-item text matching. Based on this, our framework, UniTRec, unifies the contrastive objectives of discriminative matching scores and candidate text perplexity to jointly enhance text-based recommendation. Extensive evaluation shows that UniTRec delivers SOTA performance on three text-based recommendation tasks.

2022

pdf bib
DIGAT: Modeling News Recommendation with Dual-Graph Interaction
Zhiming Mao | Jian Li | Hongru Wang | Xingshan Zeng | Kam-Fai Wong
Findings of the Association for Computational Linguistics: EMNLP 2022

News recommendation (NR) is essential for online news services. Existing NR methods typically adopt a news-user representation learning framework, facing two potential limitations. First, in news encoder, single candidate news encoding suffers from an insufficient semantic information problem. Second, existing graph-based NR methods are promising but lack effective news-user feature interaction, rendering the graph-based recommendation suboptimal. To overcome these limitations, we propose dual-interactive graph attention networks (DIGAT) consisting of news- and user-graph channels. In the news-graph channel, we enrich the semantics of single candidate news by incorporating the semantically relevant news information with a semantic-augmented graph (SAG). In the user-graph channel, multi-level user interests are represented with a news-topic graph. Most notably, we design a dual-graph interaction process to perform effective feature interaction between the news and user graphs, which facilitates accurate news-user representation matching. Experiment results on the benchmark dataset MIND show that DIGAT outperforms existing news recommendation methods. Further ablation studies and analyses validate the effectiveness of (1) semantic-augmented news graph modeling and (2) dual-graph interaction.

2021

pdf bib
Neural News Recommendation with Collaborative News Encoding and Structural User Encoding
Zhiming Mao | Xingshan Zeng | Kam-Fai Wong
Findings of the Association for Computational Linguistics: EMNLP 2021

Automatic news recommendation has gained much attention from the academic community and industry. Recent studies reveal that the key to this task lies within the effective representation learning of both news and users. Existing works typically encode news title and content separately while neglecting their semantic interaction, which is inadequate for news text comprehension. Besides, previous models encode user browsing history without leveraging the structural correlation of user browsed news to reflect user interests explicitly. In this work, we propose a news recommendation framework consisting of collaborative news encoding (CNE) and structural user encoding (SUE) to enhance news and user representation learning. CNE equipped with bidirectional LSTMs encodes news title and content collaboratively with cross-selection and cross-attention modules to learn semantic-interactive news representations. SUE utilizes graph convolutional networks to extract cluster-structural features of user history, followed by intra-cluster and inter-cluster attention modules to learn hierarchical user interest representations. Experiment results on the MIND dataset validate the effectiveness of our model to improve the performance of news recommendation.

2020

pdf bib
Dynamic Online Conversation Recommendation
Xingshan Zeng | Jing Li | Lu Wang | Zhiming Mao | Kam-Fai Wong
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Trending topics in social media content evolve over time, and it is therefore crucial to understand social media users and their interpersonal communications in a dynamic manner. Here we study dynamic online conversation recommendation, to help users engage in conversations that satisfy their evolving interests. While most prior work assumes static user interests, our model is able to capture the temporal aspects of user interests, and further handle future conversations that are unseen during training time. Concretely, we propose a neural architecture to exploit changes of user interactions and interests over time, to predict which discussions they are likely to enter. We conduct experiments on large-scale collections of Reddit conversations, and results on three subreddits show that our model significantly outperforms state-of-the-art models that make a static assumption of user interests. We further evaluate on handling “cold start”, and observe consistently better performance by our model when considering various degrees of sparsity of user’s chatting history and conversation contexts. Lastly, analyses on our model outputs indicate user interest change, explaining the advantage and efficacy of our approach.