Zhiqiang Tao
2024
Self-Training Large Language and Vision Assistant for Medical Question Answering
Guohao Sun
|
Can Qin
|
Huazhu Fu
|
Linwei Wang
|
Zhiqiang Tao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large Vision-Language Models (LVLMs) have shown significant potential in assisting medical diagnosis by leveraging extensive biomedical datasets. However, the advancement of medical image understanding and reasoning critically depends on building high-quality visual instruction data, which is costly and labor-intensive to obtain, particularly in the medical domain. To mitigate this data-starving issue, we introduce Self-Training Large Language and Vision Assistant for Medical (STLLaVA-Med). The proposed method is designed to train a policy model (an LVLM) capable of auto-generating medical visual instruction data to improve data efficiency, guided through Direct Preference Optimization (DPO). Specifically, a more powerful and larger LVLM (e.g., GPT-4o) is involved as a biomedical expert to oversee the DPO fine-tuning process on the auto-generated data, encouraging the policy model to align efficiently with human preferences. We validate the efficacy and data efficiency of STLLaVA-Med across three major medical Visual Question Answering (VQA) benchmarks, demonstrating competitive zero-shot performance with the utilization of only 9% of the medical data.
Do Large Language Models Rank Fairly? An Empirical Study on the Fairness of LLMs as Rankers
Yuan Wang
|
Xuyang Wu
|
Hsin-Tai Wu
|
Zhiqiang Tao
|
Yi Fang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
The integration of Large Language Models (LLMs) in information retrieval has raised a critical reevaluation of fairness in the text-ranking models. LLMs, such as GPT models and Llama2, have shown effectiveness in natural language understanding tasks, and prior works such as RankGPT have demonstrated that the LLMs have better performance than the traditional ranking models in the ranking task. However, their fairness remains largely unexplored. This paper presents an empirical study evaluating these LLMs using the TREC Fair Ranking dataset, focusing on the representation of binary protected attributes such as gender and geographic location, which are historically underrepresented in search outcomes. Our analysis delves into how these LLMs handle queries and documents related to these attributes, aiming to uncover biases in their ranking algorithms. We assess fairness from both user and content perspectives, contributing an empirical benchmark for evaluating LLMs as the fair ranker.