Zhiwei Liu


2022

pdf bib
Choose Your QA Model Wisely: A Systematic Study of Generative and Extractive Readers for Question Answering
Man Luo | Kazuma Hashimoto | Semih Yavuz | Zhiwei Liu | Chitta Baral | Yingbo Zhou
Proceedings of the 1st Workshop on Semiparametric Methods in NLP: Decoupling Logic from Knowledge

While both extractive and generative readers have been successfully applied to the Question Answering (QA) task, little attention has been paid toward the systematic comparison of them. Characterizing the strengths and weaknesses of the two readers is crucial not only for making a more informed reader selection in practice but also for developing a deeper understanding to foster further research on improving readers in a principled manner. Motivated by this goal, we make the first attempt to systematically study the comparison of extractive and generative readers for question answering. To be aligned with the state-of-the-art, we explore nine transformer-based large pre-trained language models (PrLMs) as backbone architectures. Furthermore, we organize our findings under two main categories: (1) keeping the architecture invariant, and (2) varying the underlying PrLMs. Among several interesting findings, it is important to highlight that (1) the generative readers perform better in long context QA, (2) the extractive readers perform better in short context while also showing better out-of-domain generalization, and (3) the encoder of encoder-decoder PrLMs (e.g., T5) turns out to be a strong extractive reader and outperforms the standard choice of encoder-only PrLMs (e.g., RoBERTa). We also study the effect of multi-task learning on the two types of readers varying the underlying PrLMs and perform qualitative and quantitative diagnosis to provide further insights into future directions in modeling better readers.

pdf bib
Are Pre-trained Transformers Robust in Intent Classification? A Missing Ingredient in Evaluation of Out-of-Scope Intent Detection
Jianguo Zhang | Kazuma Hashimoto | Yao Wan | Zhiwei Liu | Ye Liu | Caiming Xiong | Philip Yu
Proceedings of the 4th Workshop on NLP for Conversational AI

Pre-trained Transformer-based models were reported to be robust in intent classification. In this work, we first point out the importance of in-domain out-of-scope detection in few-shot intent recognition tasks and then illustrate the vulnerability of pre-trained Transformer-based models against samples that are in-domain but out-of-scope (ID-OOS). We construct two new datasets, and empirically show that pre-trained models do not perform well on both ID-OOS examples and general out-of-scope examples, especially on fine-grained few-shot intent detection tasks.

2021

pdf bib
Few-Shot Intent Detection via Contrastive Pre-Training and Fine-Tuning
Jianguo Zhang | Trung Bui | Seunghyun Yoon | Xiang Chen | Zhiwei Liu | Congying Xia | Quan Hung Tran | Walter Chang | Philip Yu
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

In this work, we focus on a more challenging few-shot intent detection scenario where many intents are fine-grained and semantically similar. We present a simple yet effective few-shot intent detection schema via contrastive pre-training and fine-tuning. Specifically, we first conduct self-supervised contrastive pre-training on collected intent datasets, which implicitly learns to discriminate semantically similar utterances without using any labels. We then perform few-shot intent detection together with supervised contrastive learning, which explicitly pulls utterances from the same intent closer and pushes utterances across different intents farther. Experimental results show that our proposed method achieves state-of-the-art performance on three challenging intent detection datasets under 5-shot and 10-shot settings.

pdf bib
PDALN: Progressive Domain Adaptation over a Pre-trained Model for Low-Resource Cross-Domain Named Entity Recognition
Tao Zhang | Congying Xia | Philip S. Yu | Zhiwei Liu | Shu Zhao
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Cross-domain Named Entity Recognition (NER) transfers the NER knowledge from high-resource domains to the low-resource target domain. Due to limited labeled resources and domain shift, cross-domain NER is a challenging task. To address these challenges, we propose a progressive domain adaptation Knowledge Distillation (KD) approach – PDALN. It achieves superior domain adaptability by employing three components: (1) Adaptive data augmentation techniques, which alleviate cross-domain gap and label sparsity simultaneously; (2) Multi-level Domain invariant features, derived from a multi-grained MMD (Maximum Mean Discrepancy) approach, to enable knowledge transfer across domains; (3) Advanced KD schema, which progressively enables powerful pre-trained language models to perform domain adaptation. Extensive experiments on four benchmarks show that PDALN can effectively adapt high-resource domains to low-resource target domains, even if they are diverse in terms and writing styles. Comparison with other baselines indicates the state-of-the-art performance of PDALN.